Система аварийного спасения корабля союз. От "сырых" данных - к полезной информации

Штаб-квартира компании находится в городе Кэри, штат Северная Каролина, США .

SAS Россия/СНГ

Представительство компании SAS в России и странах СНГ было открыто в 1996 году.

Показатели деятельности

2018: Рост выручки в сегменте программных платформенных решений на базе ИИ на 104,6%

Компания SAS по итогам 2018 года продемонстрировала рост на 104,6% в сегменте программных платформенных решений на базе искусственного интеллекта . Это примерно в четыре раза превышает общие темпы роста рынка ИИ -разработок, который в течение всего прошлого года также показывал стабильный рост. Достигнутые показатели обеспечили SAS второе место по объемам выручки в категории программных платформ на основе ИИ – выручка в этом сегменте составила $89 млн, сообщили в SAS 14 августа 2019 года.

SAS продолжает активно развивать ИИ-направление. Весной 2019 года компания объявила о своем намерении инвестировать $1 млрд в технологии искусственного интеллекта в течение ближайших трех лет. Это 26% от годовой выручки SAS – то есть объем инвестиций будет вдвое выше, чем у крупнейших ИТ-компаний в среднем, подчеркнули в компании. Инвестиционный план предполагает разработку и внедрение новых программных решений, образовательных программ, экспертных услуг и т.п.

История

2019: Инвестирование $1 млрд в искусственный интеллект

18 марта 2019 года компания SAS объявила о планах инвестировать около $1 млрд в искусственный интеллект , предназначенный для использования в собственной аналитической платформе, обучения специалистов по обработке данных и проведения исследований и разработок. Новые технологии SAS будут использоваться для решения задач, которые стоят перед конкретными отраслями.

Объявленное инвестирование будет осуществляться в течение трех лет, начиная с 2019 года. Оно станет частью усилий компании по укреплению своей репутации. SAS считается пионером в сфере анализа и обработки данных, но частная компания без публичной огласки перестраивает свой бизнес и продукты, отмечает издание ZDNet .

Новые инвестиции SAS будут сосредоточены на исследованиях и разработках в области ИИ, а также образовательных инициативах, таких как сертификация и обучение интеллектуальной обработке данных. Еще одним направлением работы станут сервисы, повышающие окупаемость проектов.

Работа SAS в области искусственного интеллекта будет сосредоточена над встраиванием соответствующих технологий в платформу компании и созданием инструментов для управления данными, анализа поведения клиентов, мошенничества, безопасности и управления рисками.

Компания также будет стремиться объединить данные искусственного интеллекта и интернета вещей для использования на различных рынках - от финансового сектора до производства и здравоохранения.

Как рассказал ZDNet операционный и технический директор SAS Оливер Шабенбергер (Oliver Schabenberger), в последние годы компания «была не так заметна, как могла быть», однако она совершает поворот в сторону SaaS , связывая свою платформу с другими аналитическими инструментами и лучше ориентируясь на рынки.

2018: Открытие подразделения по IoT-аналитике

Компания SAS в феврале 2018 года объявила об открытии подразделения по IoT -аналитике. Сотрудники глобального подразделения сфокусируются на экспертизе по развитию аналитики для интернета вещей (IoT) в стратегических отраслях - ритейле , промышленности, здравоохранении и транспортной отрасли.

Как рассказали в компании, поводами для создания данного подразделения стали рост доходов от продажи IoT-решений на 60% по итогам 2017 года, потенциал для развития аналитики интернета вещей и широкие возможности для бизнеса с учетом увеличения количества подключенных устройств в мире.

Подразделение объединяет в себе ресурсы R&D, маркетинга, специалистов по поддержке продаж. Его цель - продолжить разработку, поставку и поддержку программного обеспечения для интернета вещей. Кроме того, сотрудники подразделения будут централизованно накапливать передовые практики и предоставлять экспертизу в ключевых отраслях, в которых IoT развивается быстрее всего: промышленность, розничная торговля, страхование и здравоохранение , топливно-энергетические компании и транспорт.

Компания SAS в последние годы разработала целый стек специализированных аналитических технологий, которые необходимы для монетизации платформ IoT, - рассказал Юлий Гольдберг , директор по инновациям SAS Россия/СНГ. - У большинства заказчиков постепенно формируется понимание, что аналитическая составляющая критична, чтобы получить от IoT реальную отдачу. Поэтому для SAS вполне логичный шаг объединить все наши технологии, применяемые в IoT, в единую платформу и сформировать специализированное подразделение, которое будет ее целенаправленно развивать. Включение в состав этой команды экспертов-практиков из различных отраслей позволит нам не просто предлагать заказчикам платформу IoT, но и формировать для них специализированные отраслевые решения для оптимизации конкретных процессов с применением интернета вещей.

2017: Рекордная выручка

В 2017 году выручка SAS составила рекордные $3,24 млрд, увеличившись на 1,25% относительно 2016-го. В компании связывают этот подъем, пусть и небольшой, с высоким спросом на технологии искусственного интеллекта , машинного обучения , облачные решения, а также системы управления рисками и противодействия мошенничеству.

Большая часть оборота SAS - около 49% в 2017 году - пришлась на страны Северной и Южной Америки. Вторым по величине регионом для компании остается EMEA (Европа , Ближний Восток, Африка), в котором поставщик решений и услуг в области бизнес-аналитики заработал 36,5% выручки. Доля Азиатско-Тихоокеанского региона составила 14,5%. При этом наибольшие темпы роста клиентской базы зафиксированы в Азиатско-Тихоокеанском регионе и Латинской Америке.

Из отчета SAS следует, что львиная доля доходов (28% по итогам 2017 года) компании поступает от банковских клиентов. В тройку самых прибыльных заказчиков входят представители правительственных учреждений (16%) и сферы услуг (12%). Страховые компании принесли вендору 9% выручки. Утверждается, что все крупнейшие в мире компании, входящие в рейтинг Fortune 500, пользуются услугами SAS.

В 2017 году облачная выручка SAS подскочила, а доходы в области [[Интернет вещей Internet of Things (IoT)|[[Интернет вещей Internet of Things (IoT)|[[Интернет вещей Internet of Things (IoT)|[[Интернет вещей Internet of Things (IoT)|Интернета вещей (IoT) ]]]]]]]] повысились на 60%. В IDC прогнозируют, что объем рынка аналитических решений в сфере IoT к 2020 году превысит $23 млрд, что открывает перед SAS большие возможности.

Годовая выручка SAS в области управления рисками возросла на 35%, что говорит об окупаемости инвестиций здесь и желании большего количества компаний создавать культуру, в которой все риски прогнозируются, позволяя выполнять законодательные требования и оценивать эффективность инвестиций, отмечают в компании.

В 2017 году SAS реинвестировала в исследования и разработки 26% своей выручки, тогда как средний показатель по рынку составляет 26%.

2016

Рост выручки в России на 40%

21 февраля 2017 года SAS сообщила о доходах за предыдущий год. Компания отметила сохранение высоких темпов роста российского бизнеса.

По итогам 2016 года выручка SAS в глобальном масштабе составила $3,2 млрд, что на 4% больше показателя годичной давности. Продажи компании в России и странах СНГ подскочили более чем на 40%, несмотря на непростую экономическую ситуацию в стране и неблагоприятные тенденции рынка.


В 2016 году исполнилось 20 лет с момента выхода SAS на российский рынок. В этот юбилейный год компания освоила сегменты здравоохранения и облачной аналитики, а также открыла представительство в Казахстане.

В 2016 году SAS выполнила в России и СНГ проекты в таких областях, как клиентская аналитика (в Сбербанке), управление рисками (в ВТБ), автоматизация кредитного конвейера и перевод существующей системы андеррайтинга на решения SAS (в нескольких других банках). Кроме того, компания отметила проекты по автоматизации процессов риск-менеджмента, внутреннего контроля и аудита в «Роснефти» и «Ростелекоме» .

SAS реализовала больше 10 проектов в сфере облачной аналитики по моделям BaaS, SaaS и RaaS. Чтобы российские компании могли воочию увидеть, как аналитика может изменить их работу, какие она может дать преимущества и результаты, SAS инвестировала средства в создание инновационного центра в Москве .

SAS в тройке лучших работодателей мира

В 2016 году SAS вошла в тройку лидеров рейтинга лучших работодателей мира , который ежегодно составляет институт Great Place to Work. Четвертый год подряд SAS занимает второе место в этом рейтинге и уже на протяжении шести лет – одно из двух первых. При этом в список лучших 25 работодателей мира SAS попадает регулярно, начиная с момента основания института Great Place to Work в 1980 году.

Еще на этапе своего становления руководство SAS отследило связь между довольными сотрудниками и успешным бизнесом и всегда уделяло большое внимание корпоративной культуре и условиям работы в компании. Благодаря низким показателям оттока персонала, компании ежегодно удается экономить миллионы долларов , снижая расходы на привлечение и подготовку новых специалистов. В свою очередь, клиенты компании могут быть уверены в долгосрочных отношениях с экспертами SAS на всех этапах сотрудничества.

Компания уделяет большое внимание развитию региональных офисов и распространению в них корпоративной культуры. «HR-политика российского офиса базируется на основополагающих принципах, практикуемых корпорацией в области управления персоналом. Для успеха нашего бизнеса крайне важно наличие самых лучших профессионалов в области аналитики и управления данными. При этом привлечение и удержание высококлассных специалистов является для нас очень непростой задачей, особенно в условиях острой нехватки таких специалистов на российском рынке и постоянной `охоты` за ними со стороны наших конкурентов и клиентов. Тем не менее мы успешно справляемся – на сегодняшний день уровень оттока персонала в нашей компании всего лишь 5%», - комментирует Санина Юлия , директор по персоналу SAS Россия /СНГ.

2014: Выручка $3,09 млрд.

В 2014 году глобальная выручка составила $3,09 млрд. Gartner признал SAS лидером рынка в своих магических квадрантах по управлению ассортиментом, интегрированному управлению маркетингом, управлению качеством данных, интеграции данных, управлению операционными рисками и других. По данным IDC , компания SAS по-прежнему занимает более 35% рынка инструментов для углубленной аналитики, сохраняя двукратный отрыв от ближайшего преследователя, а также является игроком номер один в управлении кредитными рисками. Forrester Research назвала SAS лидером рынка гибких -платформ, лидером рынка решений для планирования в ритейле и в других сегментах. Исследовательская компания Chartis признала SAS победителем рейтинга RiskTech100, лидером квадранта поставщиков решений для управления операционными рисками, лидером в области решений для противодействия мошенничеству.

В 2014 году SAS приложила усилия, чтобы выпустить на рынок комплексное аналитическое ПО, позволяющее использовать платформу Hadoop для обработки (потребность со стороны клиентов в этом неуклонно росла). Линейка in-memory продуктов интерактивной аналитики в Big Data архитектуре пополнилась SAS Visual Statistics и SAS In-Memory Statistics for Hadoop .

Линейка прикладных решений для управления рисками пополнилась новым SAS Enterprise Limit Management, которое позволяет централизованно управлять лимитами в масштабах всей финансовой организации.

Спрос на различные прикладные аналитические решения сильно зависит от экономической ситуации и от сопутствующих ей условий и требований для бизнеса. В 2014 году во многих отраслях российской экономики произошли изменения в приоритезации задач, решаемых с помощью аналитики.

Так, в финансовом секторе стали актуальными решения для клиентской аналитики, сбора задолженности, выявления и предотвращения мошенничества. На первый план также вышли задачи по оптимизации кредитного процесса и совершенствованию систем управления рисками.

В 2015 году, согласно прогнозам SAS, продолжится рост в сегментах облачной аналитики, бизнес-аналитики, визуализации данных, управления данными и Hadoop, анализа клиентской базы, анализа для обеспечения безопасности, противодействия мошенничеству и управления рисками.

2013: Продажи превысили $3 млрд (+5,2%)

Доход в 2013 году преодолел отметку в $3 млрд, показав прирост в 5,2% по сравнению с предыдущим годом. Доля бизнеса SAS в странах Европы, Ближнего Востока и Африки (EMEA) увеличилась до 41,4 процентов за счет ее некоторого сокращения в других регионах: на страны Азии пришлось 11,9 %, а на государства американского континента – 46,7% общей выручки компании.

Показатель выручки в $3,02 млрд в 2013 году был достигнут во многом благодаря концентрации на инструментах работы с большими данными на базе технологий высокопроизводительной аналитики (SAS High-Performance Analytics), на инструментах визуализации , доступных теперь и для всех видов мобильных устройств (Visual Analytics), на самых востребованных заказчиками отраслевых бизнес-задачах.

Доход компании вырос во всех регионах, по всем основным категориям продуктов и отраслей. Особенно можно выделить увеличение выручки по решениям для обнаружения и предотвращения мошенничества (на 44% по всем индустриям), направлению Business Intelligence, включая визуализацию (19,6%), в области энергетики и нефтегаза (18%), здравоохранения (17%), для финансовых рынков (16%).

Объем выручки от услуг, предоставляемых консультантами, вырос на 60% относительно 2012 года.

2012

Продажи $2,87 млрд

Общий доход компании SAS в 2012 году достиг $2,87 млрд, прибавив 5,4% по сравнению с предыдущим годом. На страны Европы, Ближнего Востока и Африки (EMEA) приходится 41% полученной выручки, на страны Азии – 12%, а на страны американского континента – 47%. Темпы роста дохода компании SAS в России и странах СНГ многократно превысили глобальный показатель и значительно опередили скорость роста российского рынка бизнес-аналитики в 2012 году, который, по предварительным оценкам, увеличился на 19%.

Как для работодателя, 2012 год стал рекордным для SAS годом по количеству и уровню побед. Компания вошла в число лучших работодателей в 17 странах мира, а по итогам всемирного исследования организации Great Place to Work, при проведении которого изучаются условия работы в более чем 5600 компаниях и мнения более чем 2,5 млн работников, SAS заняла 1-е место, став лучшим международным работодателем.

Выпуск линейки SAS High-Performance Analytics

Прорывом 2012 года для компании стал выход полной линейки высокопроизводительных аналитических инструментов SAS High-Performance Analytics .

На высокопроизводительной платформе SAS был реализован ряд прикладных решений:

  • SAS High-Performance Risks - для высокопроизводительного расчета уровня риска портфеля на рынках капитала;
  • SAS High-Performance Markdown Optimization - для расчета оптимальной стоимости и скидок для розничной торговли;
  • SAS High-Performance Marketing Optimization - для определения оптимального предложения каждому клиенту;
  • SAS High-Performance Liquidity Risk Management – для высокопроизводительного расчета рисков ликвидности;
  • SAS High-Performance Stress Testing – для оценки устойчивости компании к различным негативным факторам;
  • SAS High-Performance Anti-Money Laundering и другие решения для борьбы с финансовыми преступлениями и отмыванием доходов, полученных преступным путем.

Преимущества, высокопроизводительной аналитики SAS уже оценили десятки компаний по всему миру, в том числе Bank of America и HP, а также независимые эксперты. Так, исследовательская компания Forrester Research в опубликованном в начале текущего года отчете об исследовании Forrester Wave: Predictive Analytics Solutions, посвященном средствам прогнозной аналитики для работы с «большими данными», называет SAS бесспорным и непоколебимым лидером в области аналитических решений для «больших данных ».

Исследовательская компания Chartis Research назвала SAS лидером в области решений для соблюдения стандартов Базель III. Эксперты Gartner Research включили SAS в квадрант лидеров в области решений класса EGRC (Enterprise Governance, Risk and Compliance). Благодаря новой системе SAS Visual Analytics и давно признанной SAS JMP, компания была признана лидером рынка инструментов для продвинутой визуализации данных. Возможности, простота использования и потенциал технологии управления данными SAS DataFlux Data Management Platform позволили SAS стать лидером в квадранте Gartner по инструментам для управления качеством данных.

Ажиотажный интерес во всем мире в минувшем году вызвали возможности текстовой аналитики SAS. Государственные и коммерческие организации используют SAS Text Analytics для анализа жалоб и обращений, борьбы с мошенничеством, анализа предпочтений и прогнозирования спроса и других задач, связанных с анализом неструктурированной информации. В России и странах СНГ также успешно стартовали несколько пилотных проектов в области текстовой аналитики, и в 2013 году эта работа будет продолжена.

2011: Рост продаж на 12% до $2,7 млрд

Общий доход SAS в 2011 году продемонстрировал двузначный показатель роста, взлетев на 12% и достигнув рекордных 2.725 млрд долларов . Доход распределился следующим образом:

  • на Америку пришлось 46%;
  • на Европу, Ближний Восток и Африку (EMEA) – 42%;
  • на страны Азиатско-Тихоокеанском региона –12% общего дохода компании.

Менеджмент компании не забывает про персонал и старается сделать так, чтобы люди были довольны своей работой. Маленькие удовольствия от работы в компании по состоянию на 2008 год включали в себя такие вещи как бесплатные фрукты по понедельникам, бесплатные завтраки по пятницам, «M&M-день» в среду и бесплатные аппараты с соками и газировкой в офисах. В кампусе SAS находится детский сад, работающий по Системе Монтессори, центр красоты и здоровья, воплощается много других программ для того, чтобы сделать работу как можно более комфортабельной. Как результат, SAS часто включается в списки лучших компаний в исследованиях Best place to work.

2007: 45 тыс клиентов в 109 странах

Годовой доход компании в 2007 году достиг $2,15 млрд. Представительства компании работают в 109 странах и поддерживают более 45 000 клиентов по всему миру. Благодаря тому, что компания частная и не обязана беспокоиться о своих биржевых котировках, необычно большая часть годового дохода SAS, около 25%, направляется в исследования и разработку продуктов. Это сказывается на том, что в плане функционала продукты SAS, по признанию многих аналитиков, одни из сильнейших..

В тот же период головной офис обосновался в своём новом кампусе, расположенном на 80 гектарах в городе Кэри, штат Северная Каролина, где и располагается по сей день.

1976: Основание компании и первый продукт

Компания SAS основана в 1976 году Энтони Баром (Anthony Barr), Джеймсом Гуднайтом (James Goodnight), Джоном Соллом (John Sall) и Джейн Хельвиг (Jane Helvig). Изначально название SAS - это акроним от Statistical Analysis System, который со временем стал использоваться в качестве имени собственного для обозначения, как самой компании, так и ее продуктов давно уже вышедших за рамки простых инструментов для статистического анализа.

Первый базовый продукт SAS, выпущенный в 1976 году, использовался для статистического анализа данных. Программный пакет состоял из нескольких модулей, которые выполнялись на мейнфреймах IBM . Помимо стандартной для мейнфреймов практики выполнения программ в пакетном (batch) режиме, SAS предложил оригинальную для того времени опцию - оконный интерфейс разработки и выполнения программ. Программа писалась в одном окне, результаты её работы отображались в другом, а логи выводились в третьем.

По мере того, как появлялись другие типы компьютеров, SAS разрабатывал приложения, которые выполнялись и в новой среде. Таким образом, пользователи SAS могли работать на компьютерах под управлением любой операционной системы . Сейчас приложения SAS могут выполняться на персональных компьютерах как сетевых, так и не подключённых к сети.

Продукты и решения SAS

Есть две категории продуктов класса "бизнес-аналитика - Business Intelligence и Business Analytics . К сожалению, в силу исторических причин оба этих термина переводятся на русский язык одинаково, хотя первый описывает системы отчетности и относительно простого OLAP -анализа, а второй - весьма изощренные средства интеллектуального и статистического анализа структурированных и неструктурированных данных. Хотя SAS имеет в своем арсенале продукты обеих упомянутых категорий, в области Business Analytics она несомненный мировой лидер. Сложность применяемых ею методик и программных продуктов предъявляет повышенные требования к продвигающим их партнерам и накладывает отпечаток на модель ведения бизнеса в каждой стране. Представительство SAS в России было открыто в 1996 г., и за прошедшие полтора десятилетия с его помощью такими передовыми средствами бизнес-анализа были вооружены десятки крупных банков и телекоммуникационных компаний.

Компания SAS предлагает полностью настраиваемые решения для автоматизации функциональных направлений бизнеса - финансового менеджмента, управления рисками, маркетинга, управления цепочками поставок и т. д. В решениях учитывается специфика конкретной отрасли.

Все решения SAS основываются на платформенном подходе к бизнес-аналитике. Единая аналитическая платформа SAS (SAS Enterprise Intelligence Platform) решает следующие базовые задачи:

  • Интеграция данных из разных источников с параллельной очисткой этих данных.
  • Хранение данных в специализированном аналитическом хранилище данных
  • Формирование и доставка пользователям аналитических отчётов различного уровня сложности.
  • Углублённая аналитика - среда для проведения углублённого анализа данных (data mining), описательного и прогнозного моделирования, прогнозирования временных рядов, оптимизации и тому подобных задач.

На основе платформы строятся решения SAS для решения задач функциональных направлений бизнеса:

  • Управление эффективностью организации (Performance Management)
    • Процессно-ориентированное управление (activity-based management)
    • Составление консолидированной отчетности
    • Бюджетирование и финансовое планирование
  • Анализ клиентской базы (клиентская аналитика)
    • Управление маркетинговыми кампаниями
    • Оптимизация маркетинговых кампаний
    • Автоматизация кросс-продаж
    • Поведенческая сегментация клиентов
  • Управление маркетинговыми ресурсами
  • Управление кредитными, операционными и рыночными рисками
  • Борьба с мошенничеством и отмыванием денег
  • Кредитный скоринг
  • Прогнозирование спроса

Функциональные решения настраиваются в соответствии с отраслевой спецификой для банков, страховых кампаний, провайдеров телекоммуникационных услуг, транспортных, энергетический, промышленных и других компаний.

Gartner выделяет следующие основные преимущества платформы SAS.

  • В отличие от большинства других разработчиков -платформ, SAS фокусируется на методах углубленной аналитики – таких, как интеллектуальный анализ данных (Data Mining) и прогнозное моделирование. Что касается узнаваемости и функциональных возможностей платформы, SAS продолжает оставаться абсолютным лидером (`800-pound gorilla`) на рынке аналитических приложений. Специальные бизнес-решения SAS позволяют заказчикам анализировать свою клиентскую базу (для целей маркетинга, удержания клиентов и оценки рисков), оценивать продукты (направление их развития, контроль качества и уровень технической поддержки), а также управлять корпоративными данными, - и всё это в привязке к специфике разных отраслей. Заказчики широко используют возможности традиционных BI-продуктов SAS, но при этом наивысшую оценку дают возможностям ее углубленной аналитики.
  • SAS предлагает каждому заказчику широкую возможность выбора необходимых ему готовых бизнес-решений - как с точки зрения их функциональности, так и отраслевой специфики. Так, например, решение для анализа социальных сетей - SAS Social Media Analytics - объединяет в себе несколько продуктов и позволяет клиентам SAS лучше понимать и учитывать в своей деятельности мнения своих заказчиков и/или лидеров общественного мнения. По результатам 2009 года SAS обладает наибольшей долей на рынке аналитических приложений. Сегодня свыше 2500 клиентов используют более 80-ти преднастроенных BI-приложений SAS.
  • Основными преимуществами SAS заказчики назвали широкую функциональность ее решений, интеграцию данных и стратегию развития компании. Наиболее важным конкурентным преимуществом SAS, непосредственно влияющим на выбор заказчиков, является лучшее (среди всех рассматриваемых BI-платформ) решение по интеграции данных. Помимо этого, по результатам опроса SAS была названа компанией №1 и по другому показателю - широте функциональности, который является основой солидной репутации SAS в области углубленной аналитики. В целом заказчики SAS высоко оценили потенциал будущего развития компании. Они особенно отметили профессионализм специалистов SAS, уважительную и доверительную атмосферу в ходе переговоров и продаж. Недаром SAS обладает широкой базой лояльных клиентов, многие из которых связали свою карьеру с продуктами SAS.
  • SAS установила партнерские отношения с рядом разработчиков баз данных (таких, как Teradata и Netezza), чтобы добиться произведения вычислений без перемещения данных, непосредственно в СУБД . Это не только позволяет избежать дублирования данных и увеличить быстродействие, но и дает заказчикам SAS возможность нарастить мощность и повысить масштабируемость системы. В результате прогнозные модели могут работать на огромных объемах данных, причем с высокой производительностью.

К наиболее реактивным, мощным и устойчиво функционирующим регуляторным системам, ответственным за включение многообразных компенсаторно-приспособительных реакций, а также некоторых патологических реакций организма в ответ на любую, и тем более шокогенную, травму, относится САС.

Значение активации САС, сопровождающейся повышением выработки и действия катехоламинов (КА), сводится прежде всего к участию в срочном переключении обменных процессов и работы жизненно важных регуляторных (нервной, эндокринной, иммунных и др.) и исполнительных (сердечно-сосудистой, дыхательной, гемостаза и др.) систем организма на «аварийный», энергетически расточительный уровень, а также к мобилизации механизмов адаптации и резистентности организма при действии на него шокогенных факторов. Однако как избыток, так и недостаток КА могут оказывать на организм и явное патогенное действие.

В начальных периодах шока увеличивается число разрядов в эфферентных симпатических нервных волокнах; резко активизируется синтез и секреция КА в адренергических нейронах, особенно в терминалях их нервных волокон, а также адреналина (А), норадреналина (НА), ДОФА и дофамина в мозговом веществе надпочечников и в тканях головного мозга (преимущественно в гипоталамусе и в коре больших полушарий), повышается уровень КА в крови (от 2 до 20 и более раз в сравнении с нормой) и поступление их в различные ткани и органы кратковременно возрастает, а затем нормализуется активность МАО в клетках различных органов, возбуждаются альфа- и бета-адренорецепторы. Итогом этого являются различные физиологические сдвиги (повышение тонуса ЦНС, в том числе высших вегетативных и эндокринных центров, увеличение частоты и силы сердечных сокращений и тонуса артериол большинства органов, мобилизации крови из депо, а также усиление обмена веществ за счет активизации гликолиза, гликогенолиза, гликонергенеза, липолиза и т. д.). Важное место в активации САС при развивающемся шоке принадлежит рефлексам с ноци-, баро- и Хеморецепторами тканей, сосудов, сердца, возникающим в ответ на их альтерацию, гипогемоперфузию, гипоксию и расстройства метаболизма.

Сразу после тяжелой механической травмы и в первые часы после нее содержание А в крови пострадавших повышается в 6 раз, а НА - в 2 раза. При этом увеличение содержания КА в крови напрямую зависит от выраженности гішоволемии, гипоксемии и ацидоза (Serfrin Р., 1981).

При травматическом и геморрагическом шоке содержание А и НА в крови возрастает в 10-50 раз, а выброс А надпочечниками - в 8-10 раз (Виноградов В. М. и др, 1975). Однако в первые 30 с после травмы происходит увеличение содержания А и снижение НА в крови и тканях надпочечников и гипоталамуса (Еремина С. А., 1968-1970). Значительно увеличивается выброс запасов А клетками мозгового вещества на/щочечников и активируются процессы восстановления этих запасов при анафилактическом шоке (Rydzynski К. et al., 1986).

У крыс в течение первого часа длительного раздавливания мягких тканей бедра (ДРМТ) быстро и значительно увеличивалось содержание А, НА, ДОФА, дофамина в надпочечниках и в крови; уровень А и НА в головном мозге, легких, печени и почках повышался, а в кишечнике и поврежденных мышцах снижался (Ельский В.

Н., 1977-1982; Нигуляну В. И. и др., 1984). В то же время содержание предшественников (ДОФА, дофамина) существенно снижалось во многих органах (головном мозге, легких, печени, почках, тонком кишечнике, скелетных мышцах) и повышалось в миокарде. К концу 4-часового периода сдавления тканей в надпочечниках снижался уровень А и ДОФА, повышалось содержание НА и дофамина, что является признаком ослабления функции мозгового вещества надпочечников. При этом содержание А во многих органах (за исключением тонкого кишечника и скелетных мышц) продолжало оставаться увеличенным, а содержание НА, ДОФА и дофамина в головном мозге, легких, печени, почках, кишечнике и мышцах снижалось. Лишь в сердце на фоне уменьшения НА было отмечено увеличение содержания как А, так и ДОФА и дофамина.

Спустя 6-20 ч после прекращения сдавливания тканей содержание А, НА, ДОФА в надпочечниках и в крови прогрессивно снижалось, что свидетельствует об угнетении синтеза КА в хромаффинной ткани. Количество А в ряде органов (головной мозг, сердце и др.) оставалось увеличенным, а в некоторых (почки, кишечник) - сниженным, в то время как содержание НА, ДОФА и дофамина оказывалось сниженным во всех изученных органах (особенно в кишечнике, печени и поврежденных мышцах). При этом отмечено стойкое снижение активности МАО в клетках различных органов.

По данным В. В. Давыдова, через 4 и 8 ч после прекращения 4-часового сдавливания тканей уровень А в надпочечниках снижался соответственно на 45 и 74 %, НА - на 38 и 62 %, дофамина - на 35 и 50 %. В то же время содержание А в плазме крови, в сравнении с нормой, было соответственно повышено на 87 и 22 %, а НА снижено на 35 и 60 %. Причем тяжесть и исход шока прямо коррелировали с первоначальной гиперактивностью САС.

В торпидной фазе травматического шока у собак содержание А и НА в надпочечниках снижено в сравнении с эректильной фазой, но выше чем в норме (Еремина С. А., 1970). По мере углубления торпидной фазы на фоне повышенного содержания А резко падает в крови уровень НА, а в тканях мозга (гипоталамусе, коре больших полушарий), миокарда и печени уменьшается также содержание адреналовых и экстраадреналовых КА.

1984) . При ожоговом шоке секреция А надпочечниками повышена, НА падает, о чем свидетельствует увеличение в крови А и снижение НА (Сааков Б. А., Бардахчьян Э. А., 1979). По мере углубления шока может происходить либо снижение (Shu Chien, 1967), либо повышение (Виноградов В. М. и др., 1975) импульсации по симпатическим волокнам.

Высокий уровень КА в крови тяжело пострадавших повышен и достигает максимума перед летальным исходом (Р. Serfrin, 1981). Одним из механизмов гипрекатехоламинемии является угнетение активности ферментов, ответственных за метаболизм КА.

В терминальный период торпидной фазы травматического шока существенно снижается количество КА (особенно НА) в надпочечниках и других органах: почках, печени, селезенке, сердце, головном мозге (Горбов А. А., 1976). В стадии необратимого шока содержание катехоламинов в организме истощается, резко ослабевает реакция адренорецепторов на экзогенные КА, а также снижается активность МАО (Laborit Н., London А., 1969).

В период глубокой постгеморрагической гипотензии и гипово- лемии возможны как ингибирование освобождения КА из окончаний симпатических нервных волокон, так и аутоингибирование системы адренергических рецепторов (Bond R., Jonson J.,

При эндотоксическом шоке развиваются дистрофические (некротические) изменения адренорецепторов надпочечников и их функциональная недостаточность (Бардахчьян Э. А., Кириченко Ю. Т., 1985).

Выяснение функциональной активности САС при шоке (синтеза, секреции КА; их распределения в крови, тканях, органах; метаболизма, выведения и проявления физиологического действия как результат взаимодействия с соответствующими адренорецепторами) имеет важное диагностическое, патогенетическое и прогностическое значение. Возникающая в ранние сроки после шокогенной травмы выраженная активизация САС является биологически целесообразной реакцией поврежденного организма. Благодаря ей включаются и активизируются жизненно важные адаптивные и гомеостатические механизмы, в реализации которых принимают участие различные отделы нервной, эндокринной, сердечно-сосудистой и других систем, а также метаболические процессы.

Активизация САС, направленная на обеспечение метаболической и функциональной деятельности вегетативного и соматического отделов нервной системы, создает возможность поддержания АД на безопасном уровне при сниженном МОК, обеспечивает удовлетворительное кровоснабжение головного мозга и сердца на фоне снижения кровоснабжения почек, кишечника, печени, мышц.

Повышенная продукция А направлена на стимуляцию жизнедеятельности важной адаптивной системы - ГГ АС (Давыдов В. В., 1982, 1987; Axelrod Т. et al., 1984). Активизация САС способствует усиленному выделению опиоидных пептидов (в том числе - эндорфинов гипофизом, мет-энкефалинов надпочечниками), ослабляющих гиперактивность ноцицептивной системы, расстройства эндокринной системы, метаболических процессов, микроциркуляции (Крыжановский Г. Н. и др., 1987; Пшенникова М. Г., 1987), усиливает деятельность дыхательного центра, ослабляет ацидоз, стабилизирует кислотно-основное состояние (Базаре- иич Г. Я. и др., 1979, 1988), обеспечивает мобилизацию метаболических процессов через изменение активности аденилат- и гуа- пилатциклазных систем мембран клеток, липолиза, гликогено- лиза, глюконеогенеза, гликолиза, энергетического и водно-электролитного обмена и т. д. (Ельский В. Н., 1975-1984; Me Ardle et al., 1975).

Однако как избыточная, так и недостаточная активность САС способствует развитию декомпенсации микроциркуляции, усилению гипоксии и нарушений функций многих тканей, органов и систем, утяжеляет течение процесса и ухудшает его исходы.

Избыток эндогенных и/или экзогенных КА может оказать при шоке нежелательные побочные влияния также и на различные комплексы эндокринной системы. Он снижает толерантность организма к глюкозе, возникающую вследствие активизации глико- генолиза и угнетения секреции инсулина (из-за стимуляции альфа-рецепторов бета-клеток островков Лангерганса поджелудочной железы), подавляет секрецию не только инсулина, но и тирео- тропина, пролактина и других гормонов. Опиоидные пептиды, усиленно выделяющиеся при шоке и различных видах стресса (Лишманов Ю. Б. и др., 1987), ограничивают активацию САС за счет как торможения секреции НА, так и инактивации аденилат- циклазы в постсинаптической мембране. Таким образом, опиоидные пептиды могут оказывать защитное действие, ограничивая чрезмерную активацию САС, ослабляя и даже предупреждая повреждающий эффект катехоламинов.

Ослабление избыточной активности САС при травмах назначением нейролептиков и транквилизаторов (Насонкин О. С. и др., 1976; Давыдов В. В. и др., 1981, 1982), лейэнкефалинов (Крыжа- новский Г. Г. и др., 1987), бета-адреноблокаторов (Novelli G. et al., 1971), альфа-адреноблокаторов (Мазуркевич Г. С., 1976) уменьшает тяжесть шока. При назначении КА при шоке может выявляться как положительный, так и отрицательный терапевтический эффект.

Назначение при шоке НА и особенно предшественников КА (фенилаланина, альфа-тирозина, ДОФА, дофамина) может облегчать, а - А и мезатона либо не изменяет, либо утяжеляет шок (Виноградов В. М. и др., 1975; Laborit Н. et al., 1969). В этой связи становятся более понятными представленные выше данные об изменении в динамике шока содержания А, НА, ДОФА и дофамина в различных тканях и органах (на фоне длительного и значительного повышения содержания А уровень НА, ДОФА и дофамина после увеличения довольно быстро и значительно снижается).

Резкое угнетение САС ослабляет защитные механизмы при шоке. Так, деструкция центральных адренергических аксонов и окончаний, в сравнении с периферической симпатэктомией, приводит к повреждениям гипоталамуса и снижению общей реактивности организма при турникетном шоке у крыс (Stoner Н. et al., 1975).

В глубокой торпидной фазе шока, особенно в ее терминальном периоде, возникает не только существенное снижение функции САС, но и наибольшее уменьшение доставки КА к клеткам мно- . их тканей и органов и снижение их физиологической активности. По мере прогрессирования торпидной фазы шока заметно ослабевает роль КА в регуляции различны* метаболических (главным образом, энергетических) и физиологических (главным образом, гемодинамических) процессов.

Усиленно продуцирующиеся при шоке опиоидные пептиды, отчетливо тормозящие как высвобождение КА из терминалей симпатических волокон в сосудах, так и их физиологический эффект, способствуют прогрессированию артериальной гипотензии и угнетению кровообращения (Guoll N., 1987), а значит утяжелению шока. Увеличенная посттравматическая продукция опио- идных пептидов, способствующая ослаблению активности САС в условиях прогрессирующих гиповолемии и гипотензии, из защитной реакции может трансформироваться в повреждающую.

Таким образом, изменениям функций САС, обмена КА в тканях и органах и их физиологического действия принадлежит важная роль как в патогенезе, так и лечений шока. К одной из компенсаторно-приспособительных реакций травмированного организма следует отнести быстро возникающую и довольно длительно тохранятощутсля нъураженнуто САС, которая про

является при следующих условиях: увеличении синтеза и секреции хромаффинной тканью и адренергическими нейронами КА (ДОФА, дофамина, НА, А); увеличении транспорта и поступления КА в ткани и органы; повышении физиологической активности КА (обеспечивающей активизацию ГГАС, формирование и поддержание централизации кровообращения, стимуляцию дыхания, стабилизацию кислотно-основного состояния внутренних сред организма, активацию ферментов энергетического обмена и т. д.). К патологическим реакциям при шоке относятся как избыточная, так и недостаточная по силе и длительности активизация САС, а тем более прогрессирующее снижение ее функций, особенно уменьшение содержания в крови и тканях НА, ДОФА и дофамина, угнетение активности МАО в тканях, снижение и извращение чувствительности адренорецепторов к КА. В целом такая реакция САС способствует ускорению декомпенсации многообразных функций организма.

Однако до настоящего времени недостаточно изучены как особенности деятельности различных звеньев САС в динамике разных видов шока (не только в клинике, но и в эксперименте), так и значение ее изменений в генезе многообразных приспособительных и патологических реакций организма.

1 февраля 2003 года при спуске с орбиты в небе над Техасом потерял устойчивость и разрушился космический челнок «Колумбия». Смерть семерых членов экипажа была быстрой, но, вероятно, они успели осознать происходящее. Что чувствовали астронавты в эти секунды, мы уже не узнаем, но нетрудно догадаться, о чем думали после катастрофы инженеры, создавшие и готовившие к запуску многоразовый корабль: «Почему случилась катастрофа? Все ли я сделал, чтобы избежать этого? Был ли у астронавтов шанс выжить?» На последний вопрос ответ однозначен: спасти экипаж «Колумбии» было невозможно, ведь конструкция корабля просто не предусматривала этого. Фото вверху: NASA/ISC

Надежность средств, при помощи которых человек способен достичь космоса, далека от идеальной. Ракета — сложная конструкция, на 90% и более состоящая из взрывоопасного топлива. Огненный шар вспыхнувшего на старте носителя, такого как «Протон» или «Сатурн-5», — явление, внешне сходное с подрывом тактического ядерного боеприпаса и гибельное для всего живого в радиусе нескольких сотен метров от эпицентра. Но даже в нормальном полете огромные нагрузки от тяги двигателей и аэродинамических сил стремятся растрясти, смять, сломать ракету и корабль. В любой момент может случиться отказ. Поэтому с самого начала освоения космоса особое внимание разработчики уделяли системе аварийного спасения (САС) космонавтов, которая должна безупречно работать именно в тех ситуациях, когда отказывает остальное оборудование.

Если полет проходит в штатном режиме, работают все системы комплекса, кроме этой. Но случись серьезный отказ или, того хуже, авария ракеты, САС — единственный шанс сохранить жизнь экипажа. Для многих, кто интересуется космонавтикой, эта аббревиатура ассоциируется с башенкой замысловатой формы, расположенной на самой вершине ракеты-носителя. «Башенка» — это двигательная установка системы аварийного спасения (ДУ САС). Но она являет собой лишь верхушку айсберга, состоящего из множества технических приспособлений, которые позволяют специалистам на Земле держать руку на пульсе ради решения лишь одной задачи — во что бы то ни стало спасти экипаж.

Спасение на старте

Заправка ракеты «Союз» компонентами топлива — довольно опасная операция. Поэтому космонавты занимают места в корабле, только когда она завершена — за два часа до намеченного старта. После этого с ракетой обычно не производится никаких активных действий — не подаются электрические команды, не приводятся в действие клапаны и другие механизмы. Это практически исключает возможность взрыва. В случае же других нештатных ситуаций — отказа бортовых систем, резкого ухудшения погодных условий — экипаж нетрудно эвакуировать со старта, и даже спешка при этом обычно не нужна.

Куда труднее спасти космонавтов на последних этапах предстартовой подготовки, когда персонал уже покинул башню обслуживания и ракета начинает активно готовиться к запуску. Поэтому ровно за 15 минут до намеченного старта приводится в готовность двигательная установка САС. С этого момента и до подъема в верхние слои атмосферы она способна в любой момент оторвать корабль с экипажем от аварийной ракеты, увести его в сторону и обеспечить мягкую посадку.

26 сентября 1983 года к орбитальной станции «Салют-7» должен был стартовать очередной «Союз». Космонавты Владимир Титов и Геннадий Стрекалов заняли свои места, шли последние приготовления к пуску. Из бункера управления не сразу заметили, как за 108 секунд до расчетного времени старта в топливной системе первой ступени ракеты возник пожар. Более того, некоторые участники запуска поначалу приняли дым за обычную картину выхода двигателей на режим, хотя команда «зажигание» по громкой связи не объявлялась. Только через шесть секунд после визуального обнаружения пламени руководитель пуска генерал Алексей Шумилин и технический руководитель подготовки ракеты-носителя Александр Солдатенков почти одновременно подали команду на включение САС. Четыре секунды команду передавали операторы, еще чуть больше секунды работала автоматика. Взревели мощные двигатели «башенки» и выдернули «Союз» из огненного шара — за секунду до этого пламя уже полностью охватило ракету-носитель. Полет занял пять с половиной минут, после чего спускаемый аппарат приземлился в четырех километрах от горящего старта. Это был единственный случай в истории космонавтики, когда для спасения экипажа пришлось задействовать ДУ САС, и она достойно справилась со своей задачей.

Система спасения должна функционировать в любых условиях, вплоть до неуправляемого хаотичного падения ракеты. Для этого сначала основные двигатели САС отрывают спасаемую часть от ракеты и быстро уводят ее в сторону, а затем включаются управляющие двигатели, которые формируют нужную траекторию спуска. Скоротечность многих аварийных ситуаций требует от САС высокого быстродействия. Поэтому все ее двигатели — твердотопливные. По сравнению с жидкостными они проще, надежнее и быстрее набирают максимальную тягу. Но и переборщить с мощностью двигателей нельзя. Перегрузку в 20 единиц, действующую в направлении «от груди к спине», человек способен выносить всего лишь около секунды. Этого времени не хватит, чтобы увести спасаемую часть корабля на безопасное расстояние от ракеты. Приходится ограничивать тягу спасательных двигателей так, чтобы перегрузка не превышала 10—15 единиц, зато такое ускорение можно поддерживать дольше.

Первая забота

7 ноября 1963 года остров Уоллопс в американском штате Вирджиния озарился вспышкой света, сопровождавшейся чудовищным, хоть и недолгим грохотом. Опережая клубы дыма, вверх рванулся небольшой предмет в форме конуса и в считанные секунды поднялся на высоту более километра. Нет, это был не НЛО! Так проходили первые испытания САС нового космического корабля «Аполлон», который должен был доставить первых американцев на Луну . Ни ракеты-носителя «Сатурн-5», ни даже самого корабля целиком еще не существовало, а испытания САС уже провели!

Эта система настолько важна, что именно с ее создания и испытаний начинается разработка пилотируемой системы. Ракета может быть еще только в чертежах, а корабль в макете, но система спасения обязана быть готова к испытаниям. В первых (самых важных) тестах проверяется отделение корабля от ракеты, стоящей на старте. Обычно при испытаниях используется макет корабля с парашютной системой, и единственной работоспособной частью является ДУ САС с нужными подсистемами. Так начиналась разработка не только «Аполлонов». Эту процедуру прошли «Меркурии», «Союзы», транспортный корабль снабжения (ТКС) для станции «Алмаз», китайский «Шэньчжоу»... А сейчас разрабатывается новейший американский лунный «Орион».

Иногда для испытания систем спасения создают специальные ракеты. Американцы для отработки САС корабля «Меркурий» сделали ракету «Литтл Джо 1», а для «Аполлона» — «Литтл Джо 2». На них проверялась работоспособность системы при максимальных скоростных напорах и в неуправляемом падении. Советские разработчики подходили к делу с еще большим размахом. Проводились экспериментальные пуски полностью снаряженных штатных ракет «Протон», которые несли «спарки» — по два возвращаемых аппарата корабля ТКС, верхний из которых был оснащен САС. Все это нужно для того, чтобы обеспечить высочайшую надежность системы в пилотируемом полете. «Протон» подвел создателей ТКС лишь один раз, и тогда САС спасла верхний возвращаемый аппарат «спарки».

Куда больше неприятностей обрушилось на лунную программу. Во время запусков беспилотных кораблей Л-1 («Зонд») для облета Луны САС четырежды спасала спускаемые аппараты при авариях «Протона». Она без замечаний справлялась со своей задачей на всех участках выведения — от момента максимального аэродинамического сопротивления до отказа последней ступени ракеты. При аварийных пусках лунного носителя Н-1 САС также работала нормально.

Медвежья услуга

Говорят: «И незаряженное ружье раз в год само стреляет». Был случай, когда из-за логической ошибки надежнейшая САС стала причиной фатальных последствий. 14 декабря 1966 года она случайно сработала после отбоя запуска беспилотного корабля «Союз». В это время из ракеты, стоящей на стартовом комплексе, уже сливали топливо. Включение двигателей САС вызвало пожар и последующий взрыв носителя. Благодаря решительности и внимательности руководителя пуска удалось эвакуировать почти весь персонал, находившийся возле ракеты в этот момент. Увы, без жертв не обошлось: задохнулся дымом пожара инженер-майор Л.В. Коростылев, руководивший стартовой командой в группе комплекса наземного оборудования. Анализ причин аварии показал, что гироскопы системы управления ракетой после отмены пуска продолжали вращаться — до полной остановки им необходимо было целых 40 минут — и «отслеживали», как положено, пространственное положение носителя. В результате система управления восприняла поворот стартового комплекса, вызванный суточным вращением Земли, как выход угловых отклонений ракеты за допустимые пределы и выдала команду на включение САС.

Не только двигатели

Двигательная установка САС — не только важнейшая, но и самая тяжелая часть системы спасения. Она «съедает» изрядную часть полезной грузоподъемности — около 10%. В то же время необходимость в ней отпадает после отделения первой ступени и подъема в верхние слои атмосферы, когда спасение могут обеспечить штатные средства отделения корабля от ракеты. В нужный момент ДУ просто «отстреливают» от ракеты-носителя, чтобы не тащить на орбиту лишний груз.

Но дежурство САС на этом отнюдь не заканчивается. Авария может случиться на любом участке полета, и спасение экипажа необходимо осуществлять вплоть до выхода на орбиту. Если полет приходится прервать, космический корабль отделяется от аварийной ракеты с помощью пиропатронов и толкателей. Могут использоваться и небольшие двигатели экстренного отделения.

При аварийном спасении на этих этапах полета экипаж может испытать весьма неприятные ощущения, в чем более 30 лет назад смогли убедиться советские космонавты Василий Лазарев и Олег Макаров . 5 апреля 1975 года их корабль не смог выйти на орбиту из-за аварии третьей ступени носителя. Не набрав орбитальной скорости, корабль вместе с аварийной ступенью, чиркнув по «порогу космоса», стал вновь возвращаться в атмосферу. Автоматика запустила целую цепочку событий: сначала корабль отделился от ракеты, затем разделился на отсеки, после чего спускаемый аппарат с космонавтами вошел в атмосферу по очень крутой траектории с перегрузкой до 22 единиц. Капсула приземлилась в труднодоступных районах Алтая на краю обрыва. К счастью, космонавты остались живы, но впечатлений им хватило на всю жизнь. При аварии на самых поздних этапах запуска возможно выведение корабля на низкую «аварийную» орбиту, где сопротивление атмосферы позволяет совершить лишь один-два витка вокруг Земли. Но за это время система управления успеет сориентировать корабль и подготовить его к нормальному управляемому спуску и приземлению в заданном районе. Перегрузки при этом остаются в пределах нормы.

От «Востока» до «Ориона»

Несмотря на общую принципиальную схожесть, реальные системы спасения космических кораблей отличаются множеством неповторимых нюансов. Например, на одноместных «Востоках» вовсе не было двигательной установки САС: в случае аварии космонавта спасало катапультное кресло — технология, досконально отработанная в авиации и считавшаяся весьма надежной. Это же кресло использовалось и при штатном возвращении на Землю — парашютная система спускаемого аппарата не обеспечивала достаточно мягкой посадки, и космонавт приземлялся отдельно. По сути, разработчики «Востока» объединили средство спасения со средством посадки.

Спускаемый аппарат имел для катапультирования специальный люк, а головной обтекатель ракеты — большой вырез. В случае катапультирования из-за аварии носителя на стартовой позиции парашют раскрыться не мог и космонавт в кресле приземлялся на специальную сетку, натянутую на высоте около 40 метров. При катапультировании уже после старта ракеты включались два пороховых двигателя кресла, которые уводили его вверх и в сторону от ракеты-носителя, после чего космонавт отделялся от кресла и приземлялся на парашюте. Высота катапультирования была ограничена четырьмя километрами: при аварии ракеты на большей высоте отключались маршевые двигатели, отделялся головной обтекатель, а потом и спускаемый аппарат «Востока». И только после этого проводилось катапультирование космонавта.

Система имела «мертвые зоны». Так, в начале подъема космонавта спасти было крайне затруднительно из-за отсутствия необходимого запаса по высоте: не успевала сработать вся цепочка событий, связанная с катапультированием, раскрытием парашюта кресла, отделением космонавта от кресла и приземлением на индивидуальном парашюте. К счастью, проверить эти выводы на практике не пришлось — все пилотируемые «Востоки» летали без аварий.

Катапультные кресла были использованы и на американских двухместных кораблях «Джемини»: они должны были спасти астронавтов на начальном участке полета и при посадке, заменяя собой запасной парашют. Если бы авария произошла на высоте больше 21 километра, корабль предполагалось отделить от ракеты с помощью штатной тормозной ДУ. Астронавты должны были сами решать, когда включать САС. Применение катапультных кресел и ручного запуска системы спасения оправдывалось высокой надежностью ракеты-носителя «Титан-2». Она заправлялась самовоспламеняющимися компонентами топлива. По замыслу разработчиков, подтвержденному экспериментами, возможность взрыва практически исключалась: окислитель и горючее, смешиваясь, просто-напросто «спокойно сгорали», а не детонировали.

Любопытно, что испытания катапультных кресел проводили сами астронавты. Во время одного из тестов (16 января 1963 года) правое кресло «выстрелило» до того, как полностью открылся люк спускаемого аппарата, и вышибло его. «Это было чертовски больно, но длилось недолго», — делился своими впечатлениями от испытаний Джон Янг.

А вот на трехместных «Аполлонах» (и еще раньше на одноместных «Меркуриях») от катапультных кресел отказались, поскольку корабли выводились на орбиту носителями, заправляемыми криогенным топливом. При аварии такой ракеты гораздо выше вероятность взрыва, и капсулы снабдили полноценными спасательными двигателями.

На корабле «Меркурий» САС срабатывала автоматически от датчиков, регистрирующих чрезмерные отклонения ракеты от заданного положения, а также в случае отказа системы электропитания. Но полностью на автоматику американцы не полагались — привести систему спасения в действие могли вручную как астронавт, так и операторы наземного центра управления полетом. В ее составе было четыре двигателя: один основной, уводивший капсулу с астронавтом от аварийной ракеты, и три вспомогательных — для отстрела и увода самой двигательной установки от корабля. Любопытно, что вектор тяги основного двигателя не проходил через центр тяжести «Меркурия». Благодаря этому даже без специальных управляющих двигателей САС уводила капсулу вперед и вбок от ракеты-носителя.

Очень рискованными были полеты космонавтов на многоместных советских «Восходах». Корабли делались на базе одноместного «Востока»: в спускаемый аппарат сажали двухтрех человек, и снабдить космонавтов катапультными креслами не было никакой возможности. Спасательных двигателей тоже не было, видимо, по причине временного характера программы, ведь во время полетов «Восходов» уже велась разработка кораблей серии «Союз». На большой высоте спасти экипаж можно было, выключив двигатели ракеты и отделив от нее корабль с последующим разделением его на отсеки. Однако случись серьезная авария на участке работы первой или второй ступени носителя, шансов на спасение у космонавтов было бы гораздо меньше. Так что «мертвая зона» у «Восходов» оказывалась значительно шире востоковской.

На кораблях следующего поколения «Союз» и «Аполлон» применялись весьма совершенные системы спасения. Так, САС «Союза» обеспечивает спасение экипажа на любом участке полета: от аварии ракеты-носителя на стартовом столе и практически до самого выхода на орбиту. Еще совершеннее и надежнее система спасения современных кораблей «Союз-ТМА». Она содержит несколько групп двигателей, и некоторые из них остаются на корабле вплоть до самого момента отделения головного обтекателя. Примерно так же будут работать САС американского «Ориона» и перспективного российского ко раб ля нового поколения.

Пленники орбиты

До сих пор мы говорили об аварийном спасении «по дороге в космос». Но о безопасности надо думать и в орбитальном полете, и при спуске на Землю. Фантасты не раз рисовали леденящую кровь картину, когда космонавты из-за аварии не могут вернуться на Землю. Бестселлером в свое время стал роман Мартина Кэйдина «В плену орбиты», главный герой которого, вымышленный пилот «Меркурия» Ричард Пруэтт, чуть было не стал заложником отказавшей тормозной двигательной установки корабля.

Чтобы космонавты не оказались «пленниками орбиты», принимаются специальные меры. Например, высота полета первых «Востоков» выбиралась так, чтобы при отказе тормозного двигателя спускаемый аппарат мог за счет сопротивления атмосферы вернуться на Землю через 10 дней. На борту при этом был соответствующий запас продуктов, воды и воздуха.

Для современных кораблей так орбиту не подберешь — они поднимаются к орбитальным станциям на 350 и более километров, а это слишком высоко для аэродинамического спуска. И здесь спасает дублирование систем. Так было в полете Николая Рукавишникова и первого болгарского космонавта Георгия Иванова . Старт корабля «Союз-33» состоялся 10 апреля 1979 года, и поначалу все шло нормально. В течение суток космонавты проверяли работу систем. Однако из-за сбоя автоматики и нештатной работы двигателя сближения стыковка со станцией «Салют-6» сорвалась. Повторные попытки успеха не принесли, зато возникли опасения и относительно возможной неисправности тормозного двигателя. Ситуация была крайне опасная. В итоге на следующий день корабль сошел с орбиты с помощью дублирующего двигателя.

Но, пожалуй, самым драматичным было возвращение со станции «Мир» корабля «Союз ТМ-5» с экипажем в составе Владимира Ляхова и первого афганского космонавта Абдула Моманда . Неприятности начались, когда на границе дня и ночи стал неуверенно работать инфракрасный датчик вертикали. Из-за этого бортовой компьютер отказался запустить двигатель на торможение. Посадка была отложена. И вдруг через семь минут двигатель неожиданно включился сам! Ляхов немедленно выключил его — иначе садиться пришлось бы уже в Китае. Однако двигатель вновь заработал «как ему вздумается», хотя тормозной импульс так и не выдал. В довершение всего компьютер, решивший, что корабль уже сошел с орбиты, запустил процесс разделения отсеков. Если бы от спускаемого аппарата успел отделиться агрегатный отсек с тормозным двигателем, космонавты, оставшись на орбите в спускаемом аппарате, были бы обречены на гибель: запаса кислорода у них было лишь на спуск и посадку. Только быстрая реакция Ляхова спасла космонавтам жизнь. Спуск был отложен на сутки. Космонавты провели их без удобств в самом буквальном смысле: бытовой отсек с ассенизационным устройством, попросту говоря туалетом, уже успел отделиться. К счастью, на следующий день все прошло как надо и космонавты благополучно приземлились.

Мертвые зоны шаттлов

САС на многоразовых крылатых космических кораблях — советском «Буране» или американских шаттлах, принципиально отличаются от вышеописанных систем. Во-первых, сам многоразовый челнок имеет большие габариты и массу. Он не делится подобно одноразовому капсульному кораблю на небольшие отсеки, а представляет собой единую конструкцию. Например, масса шаттла — почти 120 тонн. Даже для простого отстрела корабля от аварийной ракеты нужны очень мощные двигатели. При проектировании шаттлов и «Бурана» инженеры первоначально планировали оснастить их специальными твердотопливными двигателями спасения, но последние оказались чрезмерно тяжелы, и от этой затеи отказались.

Во-вторых, самолетная схема требует для безопасного полета определенного сочетания скорости и угла атаки. Обеспечить его при спасении челнока в начале полета крайне трудно, если вообще возможно. А при нештатном отделении крылатый аппарат может попросту разрушиться от огромных аэродинамических нагрузок.

Однако говорить о том, что на шаттле нет САС, неверно. Она имеется, причем довольно сложная, но у нее есть «мертвые зоны», в которых она бессильна. Одна из «мертвых зон» для американских челноков — первые две минуты полета, пока работают стартовые твердотопливные ускорители. Их считали практически безотказными, но именно они подвели в роковом полете «Челленджера» 26 января 1986 года.

В случае аварии на стартовой позиции, случившейся до запуска основных двигателей, астронавты могут экстренно покинуть корабль и в кабинке-корзине, подвешенной к тросу, скатиться с башни обслуживания в защитный бункер. С той же целью на стартовом комплексе «Бурана» был предусмотрен специальный спасательный желоб.

В полете экипаж шаттла теоретически может выпрыгнуть с парашютами. Но это возможно лишь при управляемом планировании на высоте не более шести километров и скорости не свыше 370 км/ч. При этом, чтобы не удариться о крыло, членам экипажа необходимо покидать аппарат с помощью затейливо изогнутой телескопической направляющей, выдвинутой на несколько метров через боковой люк.

Условия для спасения таким способом могут возникнуть лишь на обратном пути к Земле. Поэтому при выведении на орбиту задача аварийного спасения в основном возлагается на носитель и сам космический челнок. Везде, где возможно, их подсистемы, задействованные «на выживание», дублируются, подчас неоднократно. Даже при отказе одного из трех маршевых двигателей шаттл может выйти на низкую аварийную орбиту.

При более серьезных неприятностях по командам экипажа или из центра управления полетом запускается специальная программа, формирующая аварийную траекторию, которая приводит шаттл на один из многочисленных (более десятка) запасных аэродромов, расположенных в Европе, Северной Америке и Азии . Теоретически челнок может совершить посадку на любую подходящую взлетно-посадочную полосу длиной не менее трех километров.

Нерешенные проблемы

При создании советского челнока — корабля «Буран» — анализировалось не менее 500 возможных нештатных ситуаций. Подобно шаттлу при серьезных отказах ракета переключалась на аварийную программу, которая в зависимости от этапа полета и тяжести ситуации выводила корабль в тот или иной район возможной посадки. Начиная с определенной высоты «Буран» мог выйти на орбиту даже при отказе одного из двигателей ракетыносителя «Энергия». На случай аварийной посадки, кроме основного аэродрома, расположенного на космодроме Байконур, предполагалось ввести в строй два запасных — в Симферополе и на Дальнем Востоке в Хороле, близ Уссурийска. Интересно, что при посадке в Хороле «Буран», а с ним и самолеты сопровождения часть маневров выполняли бы в воздушном пространстве Китая.

В первых испытательных полетах и шаттлы, и «Буран» снабжались катапультными креслами. Однако при регулярных полетах такое решение оказалось неприемлемым, поскольку семь астронавтов в шаттле и до 10 космонавтов в «Буране» размещались на двух палубах, что исключало спасение всего экипажа.

Возможность спасения отделяемой кабины американцы отвергли еще на стадии проектирования, как чрезмерно дорогое и тяжелое решение. По аналогичному пути шли советские разработчики. В результате отсутствие средств спасения при «быстрых» авариях остается ахиллесовой пятой крылатых челноков. После катастроф «Челленджера» и «Колумбии» вновь были сделаны попытки вернуться к идее «спасаемой кабины». И снова они были отвергнуты из-за недостаточной надежности. Подобное решение применялось на самолетах F-111 и показало свою низкую эффективность. По той же причине оно не прижилось и на бомбардировщике B-1: в большинстве случаев при спасении в отделяемой кабине экипаж получал серьезные травмы.

И все же кадры взрыва «Челленджера», запечатленные беспристрастными видеокамерами, показывают, что кабина с экипажем хоть и оторвалась от челнока, но была практически целой! Есть даже данные, что некоторые астронавты погибли не при взрыве, а при ударе о воду. Возможно, будь кабина «спасаемой», астронавты имели бы шанс выжить. Трудно сказать. Обеспечить для плохообтекаемой кабины устойчивый полет, да еще и мягкую посадку очень сложно. Так что приходится признать, что эта идея не решает проблему спасения экипажа, и задача создания САС крупных крылатых кораблей еще ждет своего решения. О том, насколько она важна, говорит тот факт, что после двух катастроф США решили вовсе отказаться от тяжелых космических челноков, как недостаточно безопасных кораблей.

На небольших многоразовых крылатых аппаратах спасти экипаж несколько проще. Во-первых, «маленький» аппарат массой 10—20 тонн все же можно увести от ракеты при помощи традиционной ДУ САС. Такое решение предлагалось в российском проекте «Клипер». Немногочисленный экипаж — из двух-трех космонавтов — можно попытаться спасти с помощью катапультных кресел. Этот способ был основным в проекте французского многоразового корабля «Гермес». Наконец, можно спасти экипаж в компактной отделяемой капсуле, как в советском проекте «Спираль». Разработчики считали, что даже при аварии на орбите единственный пилот боевого космоплана мог вернуться на Землю в небольшой сфере, похожей на спускаемый аппарат «Востока».

Говоря о перспективах развития САС, нельзя не отметить стремление конструкторов интегрировать ее в корабль. Например, при штатном полете, вместо того чтобы отстреливать ДУ САС, ее можно использовать в качестве блока довыведения корабля на рабочую орбиту — топлива в ней для этого достаточно. Подобная идея легла, например, в основу концепции двигательного отсека корабля «Клипер». По проекту отсек может выполнять три функции: аварийное спасение, довыведение корабля на рабочую орбиту и торможение для входа в атмосферу.

И конечно, нельзя не отметить, что все рассмотренные системы спасения относятся к случаю околоземных полетов. Полеты к Луне или другим планетам поставят перед разработчиками техники совсем другие задачи, где ключевым вопросом будет не столько быстрота реакции, сколько способность Земли организовать спасательную экспедицию и способность терпящих бедствие дождаться прибытия помощи.

SAS (Serial Attached SCSI) - интерфейс для подключения HDD дисков. Своим появлением "серийный" интерфейс сменил устаревший параллельный SCSI-интерфейс. Жесткие диски, построенные на интерфейсе SAS, используются в серверных системах.

SAS является родным "младшим братом" интерфейса SCSI, соответственно, в функциональной части первый представляет собой логический протокол второго. Он основан на электрической и механической части последовательного интерфейса SATA .

Примечательно, что SAS наделен как преимуществами интерфейса SCSI, коими являются глубокая сортировка очереди команд, отличная масштабируемость, высокий уровень защиты от помех, большая длина кабелей, так и достоинствами Serial ATA , что отличается гибкими и недорогими кабелями, возможностью "горячего" подключения, стандартом "точка-точка", демонстрирующим большую производительность в сложных конфигурациях.

Кроме того, сам SAS также обладает новыми уникальными возможностями. В частности, модернизированной системой подключения с использованием хабов (SAS-расширителей), возможностью подключения к одному диску двух SAS-каналов, возможностью работы на одном контроллере дисков SAS и SATA-интерфейсов.

SAS позволяет подключать до 128 устройств на один порт, и до 16256 устройств - на один контроллер.

Современные SAS-контроллеры и HDD диски поддерживают скорость передачи данных до 600Мбайт/с. Ожидается, что в 2012 году скорость передачи достигнет 12 Гбит/с.

SAS применяет последовательный интерфейс для работы с подключаемыми накопителями (Direct Attached Storage - DAS). И хотя SAS, в отличие от параллельного интерфейса, применяемого в SCSI, использует последовательный интерфейс, для управления SAS-устройствами используются команды SCSI.

История

Более, чем 20 лет подряд параллельный шинный интерфейс был самым востребованным протоколом обмена данных для большинства систем хранения цифровых данных. Однако, по мере роста пользовательской потребности в пропускной способности системы, все чаще стали бросаться в глаза недостатки двух самых распространенных технологий параллельного интерфейса: SCSI и ATA.

Главным недостатком систем являлось отсутствие совместимости между ними: разные разъемы, наборы команд. Широкий шлейф, осуществляющий параллельную передачу данных, приводил к перекрестным наводкам, что создавало дополнительные помехи и приводило к ошибкам сигнала. Это вынуждало снижать скорость сигнала, ограничивать длину кабеля. Также приходилось завершать каждую линию отдельно, обычно эту операцию выполнял последний накопитель (в целях недопущения отражения сигнала в конце кабеля).

Усугубляло положение дел Parallel SCSI и низкое максимальное число подключаемых устройств (16 в одной цепочке), а также длина кабеля (в сумме, не более 12 м). Также существовала необходимость терминирования и ручной установки ID-накопителей, разделение полосы пропускания между всеми подключенными приводами.

Ну и наконец, огромных размеров кабели и разъемы параллельных интерфейсов делали эти технологии малопригодными для новых компактных систем.

В 2002 году комитетом T10 было предложено ввести новый протокол SAS. В нем были устранены все вышеописанные недостатки. Соединение типа "точка-точка" позволило ввести выделенную полосу пропускания под каждый диск, предельная длина кабеля составляла до 8 метров на один порт, число адресуемых устройств в одном домене возросло до 16 256, ручная установка ID сменилась уникальными номерами (WWN - World Wide Number), присваиваемыми на этапе производства. Разъемы для внешних SAS-устройств могли вместить до четырех накопителей и обеспечить полосу пропускания 1,2Гбит/с в одном направлении. Кроме того, в новом интерфейсе была обеспечена полная поддержка "горячего" подключения, а также сортировка очереди команд.

Технический комитет T10 входит в состав Международного Комитета по Стандартам в Области Информационных Технологий (InterNational Committee on Information Technology Standarts - INCITS). Он занимается разработкой и поддержкой интерфейса SAS. Также новому стандарту оказывают поддержку отраслевые группы SCSI Trade Association и Serial ATA Working Group. В них входят такие компании, как Intel, HP, LSI, Seagate, IBM и прочие.

Стандарт SAS состоит из:

  • уровня приложений: SCSI, ATA, SMP (Serial Management Protocol);
  • транспортного уровня: SSP (Serial SCSI Protocol), STP (Serial ATA Tunneling Protocol, подключения SATA устройств к SAS HBA через расширитель (expander)), SMP (Serial Management Protocol, поддержка расширителей SAS);
  • SAS port layer;
  • уровня соединения: общая часть и SSP, STP, SMP;
  • SAS phy: согласование скорости (замедление вставкой наполнителей); кодировка (8b10b как в FC и Ethernet); можно объединять в "широкий" (2x, 3x, 4x) порт в HBA/RAID или расширителе; скорость: SAS-1 - 3Гбит/с (300Мбайт/с), SAS-2 - 6Гбит/с (600Мбайт/с) ;
  • физического уровня: обеспечивается полный дуплекс; кабели и разъёмы; одиночный внутренний разъём совместим с SATA устройствами, но не наоборот (SAS устройства нельзя подключать к SATA контроллеру); внешние и групповые разъёмы (wide port, несколько phy); в SAS-2 введён период адаптации при подключении устройства (training, позволяет увеличить длину кабеля до 6м); в SAS-2.1 введены активные кабели (встроенная микросхема позволяет уменьшить толщину кабеля и увеличить длину кабеля до 30м); оптический кабель - до 100м; разъём miniSAS x4 обеспечивает питание активного кабеля; внешние miniSAS x4 кабели имеют различные разъёмы для входных и выходных портов; в SAS-2.1 добавлены внешние miniSAS 8x и внутренние miniSAS 8x разъемы.

Компоненты интерфейса SAS

Инициаторы (Initiators)

Инициатор — устройство, которое порождает запросы на обслуживание для целевых устройств и получает подтверждения по мере исполнения запросов. Зачастую инициатор выполнен в виде СБИС.

Целевые устройства (Targets)

Целевое устройство содержит логические блоки и целевые порты, которые осуществляют прием запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса. Целевое устройство может представлять собой как отдельный жесткий диск, так и целый дисковый массив.

Подсистема доставки данных (Service Delivery Subsystem)

Это часть системы ввода-вывода, осуществляющая передачу данных между инициаторами и целевыми устройствами. Обычно подсистема доставки данных состоит из кабелей, соединяющих инициатор и целевое устройство. Также, помимо кабелей в состав подсистемы доставки данных могут входить расширители SAS.

Расширители (экспандеры) (Expanders)

Расширители (экспандеры) SAS — это устройства, входящие в состав подсистемы доставки данных и позволяющие облегчить передачу данных между устройствами SAS. К примеру, расширитель позволяет подключить несколько целевых устройств SAS к одному порту инициатора. Подключение через расширитель абсолютно прозрачно для целевых устройств. Спецификации на SAS регламентируют физический, канальный и логический уровни интерфейса.

Протоколы передачи данных SAS

Благодаря этим трем протоколам интерфейс SAS полностью совместим с уже существующими SCSI приложениями:

  • Последовательный SCSI протокол (Serial SCSI Protocol SSP). Он передает команды SCSI;
  • Управляющий протокол SCSI (SCSI Management Protocol SMP). Он передает управляющую информацию на расширители;
  • Туннельный протокол SATA (SATA Tunneled Protocol STP). Он устанавливает соединение, позволяющее передавать команды SATA.

Эта мультипротокольная архитектура делает технологию SAS универсальным гибридом устройств SAS и SATA.

Разъемы SAS

Разъем SAS универсален, что является его весьма значимым преимуществом. По форм-фактору он совместим с SATA, что позволяет напрямую подключать к системе накопители SAS и SATA. Это позволяет использовать систему как с требующими высокой производительности приложениями, так и с более экономичными.

Набор команд SATA является подмножеством набора команд SAS. Это позволяет получить совместимость устройств SATA с контроллерами SAS. Но, следует учитывать, что накопители SAS не могут работать с контроллерами SATA. Вот почему они оснащены специальными ключами на разъемах - это исключает вероятность неправильного подключения.

  • Разъем SFF-8482. Это внутренний разъем для подключения стандартного жесткого диска горячей замены с SAS интерфейсом. Он также позволяет подключить диск с интерфейсом SATA, с которым полностью совместим. А вот подключить SAS-устройство к интерфейсу SATA не получится, в SAS посередине разъема отсутствует специальный вырез-ключ. Помимо данных через разъем подается питание для HDD;
  • Разъем SFF-8484. Это переходник, который позволяет подключать объединительную панель или корзину с разъемом SFF-8484 к контроллеру. Он рассчитан на 2/4 устройства. Является внутренним разъемом, оснащенным плотной упаковкой контактов;
  • Разъем SFF-8470. Это внешний разъем, обладающий высокой плотностью контактов. Максимальная пропускная способность - 4 устройства. Относится к типу Infiniband, используется также для подключения внутренних устройств;
  • Разъем SFF-8087. Это внутренний разъем mini-SAS, позволяющий подключить до 4 устройств. Представляет собой уменьшенный разъем Molex iPASS;
  • Разъем SFF-8088. Это внешний разъем mini-SAS, позволяющий подключить до 4 устройств. Представляет собой уменьшенный разъем Molex iPASS.

Разъемы SAS по габаритам существено меньше традиционных разъемов SCSI. Это позволяет использовать их в качестве разъемов для подключения компактных накопителей, размером 2,5 дюйма. Благодаря уменьшенному разъему SAS обеспечивается полное двухпортовое подключение как для 3,5-дюймовых, так и для 2,5-дюймовых дисковых накопителей.

Примечательно, что раньше эта функция была доступна лишь для 3,5-дюймовых дисковых накопителей с интерфейсом Fibre Channel.

Сравнение SAS и SCSI

  • В SAS используется последовательный протокол передачи данных между несколькими устройствами, что означает использование меньшего количества сигнальных линий;
  • SCSI использует общую шину, а это значит, что все устройства подключены к одной шине. С контроллером одновременно может работать только одно устройство. SAS же использует соединения «точка-точка», в котором каждое устройство соединено с контроллером посредством выделенного канала, что позволяет подключать к одному контроллеру множество устройств;
  • SAS не нуждается в терминации шины пользователем, в отличие от SCSI;
  • SCSI имеет проблему времени распространения сигнала по разным линиям параллельного интерфейса, оно может отличаться. SAS же лишен такого недостатка;
  • В SAS имеется поддержка большого количества устройств (> 16384). В SCSI поддерживается 8, 16, или 32 устройства на шине;
  • SAS обеспечивает более высокую пропускную способность (1.5, 3.0 или 6.0 Гбит/с). На шине SCSI пропускная способность шины разделена между всеми подключенными к ней устройствами;
  • Контроллеры SAS поддерживают подключение устройств с интерфейсом SATA;
  • SAS использует команды SCSI для управления и обмена данными с целевыми устройствами.

Сравнение SAS и SATA

  • SATA-устройства идентифицируются номером порта контроллера интерфейса SATA. SAS-устройства идентифицируются WWN-идентификаторами (World Wide Name). Для подключении SATA-устройства к домену SAS используется специальный протокол STP (Serial ATA Tunneled Protocol), описывающий согласование идентификаторов SAS и SATA;
  • В устройствах SATA 1 и SAS имеется поддержка тегированных очередей команд TCQ (Tagged Command Queuing). При этом, устройства SATA в версии 2 имеют поддержку как TCQ, так и NCQ (Native Command Queuing);
  • SATA применяет набор команд ATA, который позволяет работать с HDD дисками. SAS поддерживает более широкий набор устройств (в том числе и HDD диски, сканеры, принтеры и др.);
  • SAS поддерживает связь инициатора с целевыми устройствами по нескольким независимым линиям (в зависимости от потребности можно повысить отказоустойчивость системы и/или увеличить скорость передачи данных). SATA в версии 1 такой возможности не имеет. SATA в версии 2 использует дубликаторы портов для повышения отказоустойчивости;
  • Преимущество SATA — низкое энергопотребление и доступность, преимущества SAS — большая надежность.

На постамент установлен блок двигателей системы аварийного спасения (САС) ракеты-носителя Союз.
Находится памятник в городе Байконур (Казахстан) на территории Лицея "Международная космическая школа им. В.Н. Челомея".
Доступ свободный, можно трогать. Охраны нет.
Состояние памятника - хорошее.
Дата съёмки - 11 июля 2015 года.

Все фото кликабельны до 3648х2736.


02. САС установлена в 1990 г.
Она привезена с плаца площадки 2 (Гагаринский старт) и принадлежит к серии двигательных установок системы аварийного спасения кораблей "Союз М" (программы "Союз-Аполлон").



03. Система аварийного спасения используется при аварии ракеты-носителя на старте или на начальном этапе полёта.
При срабатывании САС, верхняя часть ракеты, в которой находится экипаж, отделяется от остальной конструкции и очень быстро отлетает вверх и в сторону.
Для резкого разгона используются твёрдотопливные ускорители - собственно блок ТТУ и стоит здесь как памятник.
Нижнее кольцо больших круглых дюз - основной двигатель САС, который спасает космонавтов.
Верхнее кольцо с маленькими соплами используется, когда ракета набирает высоту и скорость достаточные для спасения экипажа штатными средствами космического корабля.
Тогда штанга САС отстреливается и уводится этими маленькими двигателями в сторону от поднимающейся всё выше и выше ракеты.


САС неоднократно срабатывала в нештатных ситуациях при запусках РН "Союз" и "Протон".

Несколько раз система спасала полезную нагрузку беспилотных ракет и два раза - космонавтов.

Первый:
Корабль "Союз-18-1" стартовал с космодрома Байконур 5 апреля 1975 года.
Миссия - доставка экипажа на станцию Салют-4 (второе посещение).
Из-за отказа третьей ступени полёт закончился в аварийном режиме.
На 261-й секунде полёта по программе должно было произойти отделение второй ступени ракеты, однако это не случилось, ракету стало раскачивать.
Сработала система аварийного спасения, отстрелившая возвращаемый аппарат.
Во время спуска космонавты испытали пиковую перегрузку около 20,6 g.
На следующий день экипаж был эвакуирован с точки вынужденного приземления на Горном Алтае.

Второй случай, когда были спасён экипаж:
"Союз Т-10-1" должен был доставить третью основную экспедицию к орбитальной станции "Салют-7", но за 48 секунд до старта произошло возгорание топлива ракеты-носителя, после чего по команде от наземного ЦУПа активировалась система аварийного спасения, отстрелившая спускаемый аппарат с экипажем, который через 5 минут 13 секунд полёта по баллистической траектории и спуска на парашюте приземлился примерно в 4 километрах от стартового комплекса.
В истории космонавтики это был единственный случай, когда отстрел спасательной капсулы с космонавтами произошёл на стартовом столе

Во время выполнения предстартовых процедур за 90 секунд до запланированного старта вышел из строя клапан "ВП-5", отвечавший за смазку в системе подачи топлива в газогенераторы турбонасосных агрегатов блока "В" первой ступени ракеты-носителя.
Это привело к перегреву, а затем и к возгоранию насоса, что вызвало взрыв топлива.
Дозаправочные мачты еще не отошли, а весь стартовый стол уже был охвачен огнём.
Взрыв уничтожил часть кабелей, передающих данные о функционировании ракеты, поэтому лишь спустя 20 секунд после возникновения нештатной ситуации технический персонал заметил возгорание, и за 10 секунд до предполагаемого старта операторы задействовали систему аварийного спасения. Произошёл отстрел капсулы, и капсула с космонавтами полетела прочь от ракеты, которая через две секунды после отстрела развалилась, рухнув вниз, в приямок стартового стола.
В течение четырёх секунд работы твердотопливных двигателей системы аварийного спасения космонавты испытали перегрузки от 14 до 18 g, поднявшись на высоту 650 метров и затем по инерции ещё до 950 метров, где произошло раскрытие парашюта.
Через 5 минут капсула с космонавтами приземлилась в четырёх километрах от места аварии.
Ещё через 15 минут на место приземления прилетел вертолёт с врачами и спасателями.

Схема этого спасения:


04. В состав системы аварийного спасения, помимо двигательной установки системы аварийного спасения (ДУ САС), входят:
- автоматика САС (блоки автоматики, программно-временное устройство, блоки питания, гироприборы, бортовая кабельная сеть);
- двигатели головного обтекателя (РДГ);
- механизмы и агрегаты САС, размещаемые на головном обтекателе ( , ложементы, верхние опоры, механизмы аварийного стыка, противопожарная система, средства отделения блистера оптического визира).