Аддитивные технологии в подшипниковой промышленности. Аддитивные технологии — рывок в будущее

Аддитивные технологии (AF) без преувеличения считают инновационным прорывом, новым мировым трендом.

Их проникновение в ключевые сферы жизнедеятельности неразрывно связано с развитием наукоемких отраслей, высоких технологий.

Под AF-технологиями понимают процесс послойного синтеза объекта из трехмерной модели. Главный плюс технологий — ресурсосбережение, при котором потери полезного вещества устремляются к нулю.

Где используют аддитивные технологии

AF-технологии находят применение практически повсеместно. Их используют в автомобильной промышленности, энергетике, пищевой промышленности , архитектуре/дизайне , машиностроении , процессе создания сувениров, игрушек, потребительских товаров и так далее.

Аддитивные технологии в промышленности задействуют при разработке заготовок пресс-форм, специнструмента, деталей со сложной геометрией, эндопротезов, имплантатов. Готовые детали прочнее получаемых традиционным путем на 20-30%. Технологии применимы там, где невозможно/нецелесообразно использовать метод литья, механическую обработку. Их развитию в промышленности способствует увеличение ассортимента металлопорошковых материалов . Если в начале 2000-х гг насчитывалось не более 5 наименований, то сегодня их количество измеряется десятками.

В машиностроении аддитивные технологии внедряются не менее активно. В частности, автомобильные концерны с их помощью на порядок сокращают период прохождения НИОКР по литейным деталям (головки цилиндров моторов, КПП, мосты). Внедряя AF, конструкторы получают наглядную модель двигателя спустя две недели с момента завершения работы над техническим проектом. Ранее на это требовались месяцы.

Преимущества аддитивных технологий

Аддитивные технологии, успешно используемые в машиностроении и других сферах последние 20 лет, дают очевидные выгоды:

    Экономия ресурсов. Готовые изделия «выращивают» с нуля, благодаря чему можно говорить о безотходном производстве. Кроме того, исключаются расходы на утилизацию отходов. Для сравнения, потери материала на заготовках при использовании консервативных методов металлообработки могут доходить до 85%.


    Ускорение процесса производства. Сокращение цикла от момента разработки проекта до выпуска готовых изделий дает конкурентные преимущества. Компьютерное моделирование не требует долгих расчетов и многочисленных чертежей. При этом скорость не вредит качеству.


    Точность параметров . При послойном синтезе удается достигать максимального соответствия по плотности, остаточному напряжению, техническим показателям. Прочность изделий на 20―30% выше, чем у литых/кованых.


    Мобильность . Запуск производства новой серии изделий не требует длительной подготовки, закупки громоздкого оборудования. Процесс гибкий, что позволяет адаптироваться к меняющимся условиям рынка. Модели можно передавать посредством компьютерной техники в любой уголок планеты в считанные секунды.


Для таких отраслей как авиастроение, важное преимущество — снижение веса изделий, получаемых за счет внедрения аддитивных технологий. Отдельные детали удается сделать легче на 40―50% без потерь в прочности.

Мировой опыт


Ежегодно мировой рынок аддитивных технологий демонстрирует рост в пределах 27―28%. Лидером по их внедрению считаются США ― доля AF-оборудования достигает 38%. В тройке передовиков также значатся Япония и Германия. NASA тестирует созданный посредством аддитивных технологий ракетный двигатель с инжектором,


Google и 3D Systems работают над полноцветным автоматизированным 3D-принтером, который сможет изготавливать тысячи модулей для смартфонов.

Государственную программу Японии по внедрению аддитивного оборудования поддерживают 27 компаний, включая Panasonic, Mitsubishi, Nissan. Планируется, что к 2020 году здесь удастся создать совершенный промышленный 3D-сканер. Параллельно, страна финансирует мероприятия по разработке программного обеспечения , НИОКР в области сверхточной печати.

Аддитивные технологии в России


Национальный рынок AF-технологий отстает от мирового. Его развитие тормозится:

    дефицитом кадров;

    недостатком оборудования/материалов;

    нехваткой господдержки.

Сегодня в России функционируют компании, занимающиеся прототипированием. Большинство из них — небольшие, без дорогостоящего оборудования. Установками достаточно высокого уровня располагают ФГУП «НАМИ», НПО «Салют», АБ «Универсал», НИИ «Машиностроительные Технологии». Их мощностей достаточно для того, чтобы провести НИОКР. ВИАМ лидирует в производстве порошков. Они используются, например, для реконструкции лопаток турбин. В УрФУ Ельцина готовят кадры для 3D-печати, сканирования, твердотельного моделирования, реверс-инжиниринга.

Государственная политика, направленная на стимулирование развития отрасли, должна быть ориентирована на субсидирование. Действенный механизм — компенсация части расходов, которые несут компании при изготовлении и реализации пилотных серий промышленной продукции. Внедрению AF-технологий также должен способствовать Фонд развития промышленности, предоставляя целевые ссуды на льготных условиях.

Аддитивные технологии находят активное применение в энергомашиностроении, приборостроении, авиационной промышленности , космической индустрии, там, где высока потребность в изделиях сложной геометрии. В России с аддитивными технологиями познакомилось уже немало предприятий. Предлагаем вашему вниманию материал из альманаха «Управление производством» , в котором описывается несколько примеров эффективного внедрения 3D-печати.

Аддитивные технологии открыли возможность изготовления деталей любой сложности и геометрии без технологических ограничений. Геометрию детали можно менять еще на стадии проектирования и испытания.

Подготовка файлов для печати осуществляется на компьютерах со стандартным программным обеспечением , в работу принимаются файлы формата STL. Это широко используемый сегодня формат хранения трехмерных объектов для стереолитографических 3D-принтеров. Инвестиции в проект составили порядка 60 млн рублей.

Александр Зданевич, ИТ-директор НПК «Объединенная Вагонная Компания»: «Технологии аддитивной печати прогрессируют, и, вероятнее всего, уже в ближайшем будущем они изменят лицо целого ряда индустрий. Главным образом это касается предприятий, на которых выпускаются штучные товары под конкретный заказ. С массовым производством дело обстоит сложнее, хотя разные типы 3D-принтеров уже сейчас находят применение в данной области.

Существует множество технологий объемного синтеза. Одной из перспективных для промышленного внедрения является . Процесс можно разделить на два этапа. На первом формируется слой построения в виде равномерно распределенного по поверхности рабочей платформы жидкого фотополимера . Затем происходит выборочное отверждение участков данного слоя в соответствии с текущим сечением построенной на компьютере 3D-модели.

Применительно к железнодорожному машиностроению данную технологию можно использовать на этапе подготовки литейного производства, в частности, при производстве комплекта литейной оснастки. Один и тот же комплект оснастки, уникальный под каждую отливку, используется на протяжении тысяч циклов производства соответствующих литейных форм.

От соблюденной в процессе изготовления комплекта оснастки точности всех предусмотренных конструкторами параметров напрямую зависит качество конечного изделия. Традиционный способ изготовления комплекта оснастки путем механической обработки материалов (металла, пластика, иногда и дерева) весьма трудоемок и длителен (подчас занимает до нескольких месяцев), при этом чувствителен к ошибкам.

В «отпечатанные» модели можно встроить и другие узлы и агрегаты. Трехмерная печать полностью окупается за счет высокой скорости изготовления прототипов, а также за счет «доработки на столе» прямо в ОГК, которая экономит уйму времени и денег, нежели изготовление натурных образцов в «железе» на производстве.

Значительную работу по продвижению аддитивных технологий проводит Госкорпорация «Росатом» . Руководство уверено, что скоро в госкорпорации будут присутствовать все компоненты «цифрового производства» – от разработки материалов, оборудования, технологий до производства изделий. В отрасли реализуется программа по аддитивным технологиям, она состоит из подразделов: технология, сырье, оборудование, стандартизация. Разработкой технологий производства металлических порошков для 3D-печати в Росатоме занимаются три института: «Гиредмет», ВНИИХТ, ВНИИНМ. Одновременно ведется работа по созданию опытного образца 3D-принтера для трехмерной печати металлических и композитных изделий. Росатом планирует представить образец уже к концу 2017 года.

Трехмерная печать полностью окупается за счет высокой скорости изготовления прототипов, а также за счет «доработки на столе» прямо в ОГК, которая экономит уйму времени и денег, нежели изготовление натурных образцов в «железе» на производстве.

«К началу 2018 года мы должны весь цикл по аддитивным технологиям внутри Росатома замкнуть. Нам нужен еще год, чтобы запустить свой собственный пилотный образец установки, и примерно столько же – для того, чтобы договориться со всеми сторонами, которые обеспечивают используемую нормативную составляющую», – рассказал Алексей Дуб.

Оригинал этого материала: Аддитивные технологии: возможности и перспективы 3D-печати. «Управление производством. Цифровое производство» , апрель 2017. Публикуется в сокращении.

Технологический процесс не стоит на месте, с каждым днем происходит усовершенствование цифровых технологий, что позволяет использовать новшества в различных сферах жизни человека. Аддитивные технологии - одни из самых передовых и востребованных во всем мире.

Аддитивные технологии – что это такое?

Аддитивные технологии (Additive Manufacturing – от слова аддитивность – прибавляемый) – это послойное наращивание и синтез объекта с помощью компьютерных 3d технологий. Изобретение принадлежит Чарльзу Халлу, в 1986 г. сконструировавшему первый стереолитографический трехмерный принтер. Что значит аддитивный процесс послойного создания модели и как он происходит? В современной промышленности это несколько разных процессов, в результате которых моделируется 3d объект:

  • UV-облучение;
  • экструзия;
  • струйное напыление;
  • сплавление;
  • ламинирование.

Материалы, используемые в аддитивных технологиях:

  • воск;
  • гипсовый порошок;
  • жидкие фотополимеры;
  • металлические порошки;
  • разного рода полиамиды;
  • полистирол.

Применение аддитивных технологий

Технологический прогресс способствует производству множества полезных вещей для быта, здоровья и безопасности человека, например аддитивные технологии в авиастроении помогают создавать более высокоэкономичный и легкий по весу авиатранспорт, при этом его аэродинамические свойства сохраняются в полном объеме. Это стало возможным в результате применения принципов строения костей птичьего крыла в проектировании крыльев самолета. Другие сферы применения аддитивных технологий:

  • строительство;
  • сельскохозяйственная промышленность;
  • машиностроение;
  • судостроение;
  • космонавтика;
  • медицина и фармакология.

Аддитивные 3d технологии

Динамически развивающиеся быстрыми темпами аддитивные технологии 3d печати используются в прогрессивных производствах. Существует несколько инновационных видов аддитивных технологий:

  1. FDM (Fused deposition modeling) – изделие формируется послойно из расплавленной пластиковой нити.
  2. CJP (ColorJet printing) – единственная в мире 3d полноцветная печать с принципом склеивания порошка, состоящего из гипса.
  3. SLS (Selective Laser Sintering) – технология лазерного запекания, при которой образуются особо прочные объекты любых размеров.
  4. MJM (MultiJet Modeling) многоструйное 3d моделирование с использованием фотополимеров и воска.
  5. SLA (Laser Stereolithography) – с помощью лазера происходит послойное отвердевание жидкого полимера.

Аддитивные технологии в машиностроении

Джим Корр, американский инженер использует аддитивное производство в машиностроении уже в течении 15 лет. Проект Urbee, компании Kor Ecologic – это создание первого прототипа 3d автомобиля со скоростью 112 км/ч, его кузов и некоторые детали напечатаны на 3d принтере. Другая компания Local Motors в ноябре 2015 г. представила «умный и безопасный» автомобиль LMSD Swim – 75% деталей которого, выполнены с помощью трехмерной печати используя АБС-пластик и углеволокно.

Аддитивные технологии в строительстве

Аддитивное производство зданий и различных сооружений существенно сокращает время застройки. Строительная 3D печать в тренде по всему миру. Эксперименты, производимые на лазерных 3d-принтерах для обывателей выглядят на грани фантастичных. Аддитивные 3D технологии – положительные аспекты в строительстве:

  • экономия времени и финансовых затрат (скорость возведения в считанные дни снижение затрат на логистику, расходные материалы, наем большого количества персонала);
  • воплощение в жизнь любых дизайнерских решений и сложных геометрических форм (средневековые замки, дома в форме астероидов и галактик);
  • возможность строить дома с учетом сейсмоустойчивости в зонах, склонным к землетрясениям и ураганам.

Самые известные 3d строения:


Аддитивные технологии в медицине

В 2016 г. для медицины стал прорывом благодаря аддитивным 3d технологиям. Качество медицинских услуг возросло в разы. Аддитивный процесс затронул несколько сфер здравоохранения и это снизило смертность среди пациентов, нуждающихся в качественных и срочных медицинских услугах. Преимущества использования аддитивной 3d печати в медицине:

  1. С помощью томографических снимков стала возможной в высокой точностью печать органа с патологией для изучения тонкостей и нюансов предстоящей операции.
  2. Трансплантология шагнула далеко вперед. Аддитивные технологии здесь решают сразу несколько задач – морально-этическую и сокращение времени ожидания, известный факт, что люди по нескольку лет ждут донорские органы, но иногда счет идет не на года, а на дни и даже часы. В скором времени пересадка искусственно выращенных человеческих органов станет реальностью.
  3. Печать стерильного инструментария. В эпоху тяжелых и неизлечимых вирусных инфекций, одноразовые стерильные инструменты сводят на нет заражение во время медицинских манипуляций.

На сегодняшний день, в медицине успешно применяются следующие продукты аддитивных технологий:

  • искусственно выращенная человеческая кожа (актуальна для пересадки людям с высокой площадью ожогов);
  • биосовместимая костная и хрящевая ткань;
  • печать органов с онкологическим процессом и изучения влияния лекарств на опухоли;
  • стоматологические импланты, протезы, коронки;
  • индивидуальные слуховые аппараты;
  • ортопедические протезы.

Аддитивные технологии в фармакологии

При обилии современных медикаментов, для врача важно знать, что такое аддитивный эффект в лекарствах, от этого зависит успех лечения. Совокупное действие принятых препаратов во время лечения должно быть синергичным (взаимодополняющим и усиливающим), но не всегда это так. Все зависит от индивидуальной непереносимости, состояния организма. Аддитивные технологии приходят на помощь и здесь. Уже тестируются напечатанные 3d таблетки Spritam от эпилепсии, в которых заложена информация о пациенте: пол, вес, возраст, состояние печени, индивидуальная дозировка.


Аддитивные технологии в образовании

Аддитивные технологии в школе уже активно внедряются, если еще недавно школьники изучали 3d моделирование в специализированных компьютерных программах, то сейчас уже стала возможной печать смоделированного изображения в объеме. Учащиеся наглядно видят свои изобретения, допущенные ошибки и как механизм работает. К 2018 году Министерство образования планирует обучить аддитивным технологиям в учебных заведениях 3000 педагогов.

Цифровое производство с использованием аддитивного метода заключается в послойном создании объекта любой сложности. Аддитивные технологии принципиально отличаются от тех, которыми пользовались до недавнего времени. Их главное отличие в том, что они являются не вычитающими, как, к примеру, метод ЧПУ обработки, а собирательными. Иными словами, происходит собирание изделия из изготовленных порошковой композицией деталей. По сравнению с техникой литья, штамповки или обработки ЧПУ данная технология повышает производительность до тридцати раз, но самое главное, что она дает возможность получить детали, которые традиционными способами было невозможно создать.

Инновационные 3D-аддитивные технологии позволяют создавать модели любых форм и размеров, так как послойной процесс синтеза происходит слой за слоем. Данный способ производства пользуется таким методом, как прототипирование. Этодает возможность создавать не готовый объект, который можно использовать для конкретных целей, а его прототип, позволяющий оценивать возможности и характеристики модели, ее внешние данные и т. д.

Прототипы можно представлять заказчикам, а такжеиспользовать в маркетинговых целях. К примеру, на автомобильных выставках часто используются модели, созданные с помощью быстрого прототипирования, для того чтобы представить их потенциальным заказчикам. Данная технология позволяет производить прототипы быстро,а главное - недорого по сравнению со стандартными методами производства.

Технологии аддитивного производства широко используются для уменьшения затрат при проектировании за счет определения возможных ошибок на ранних стадиях проектирования. Кроме того, данная технология сокращает время выхода продукта на рынок за счет усиления связи между заказчиком и проектировщиком. Она практически полностью исключает трудоемкий и длительный этап изготовления опытных образцов.

История развития и сфера применения 3D-аддитивных технологий

Многие считают объемную печать изобретением 21 столетия, однако техника аддитивной печати зародилась еще в восьмидесятых годах прошлого века. И ее отцом считают Ч. Халла - человека, сконструировавшего первый стереолитографический 3D-принтер, работающий на SLA-технологии. Вскоре другой инженер - С. Крамп смог спроектировать и создать FDМ-принтер. И, несмотря на то, что данные технологии печати немного отличаются друг от друга, их объединяет один принцип - послойное выращивание трехмерной модели. К концу девяностых годов обе технологии стали применяться в промышленности. Чуть позже 3D-технология была внедрена двумя студентами Массачусетского института в настольные принтеры, и сегодня аддитивные технологии, технологии 3D-моделирования широко используют не только в производстве, но и в быту.

На данный момент современные технологии цифрового производства применяются в строительстве, архитектуре, медицине, космонавтике, машиностроении и других сферах деятельности. Так, например, аддитивные технологии в машиностроении позволяют создавать качественные прототипы моделей, помогающих изучить все характеристики будущего изделия или агрегата. При создании прототипов чаще всего применяется стереолитографический метод AF-печати, при котором слои жидкого полимера отвердевают благодаря использованию лазера. Методика позволяет получать прототипы сложнейших объектов с множеством мелких элементов, в том числе нестандартной формы.

Какие задачи решает применение аддитивных технологий на цифровом производстве?

Интегрированная компьютерная цифровая система управления производством включает в себя применение средств численного моделирования, трехмерной (3D) визуализации, инженерного анализа и совместной работы, предназначенных для разработки конструкции изделий и технологических процессов их изготовления.

Проектирование цифрового производства- это концепция технологической подготовки производства в единой виртуальной среде с помощью инструментов планирования, проверки и моделирования производственных процессов. Технологии цифрового производства - это, прежде всего, процессы перевода цифрового дизайна в физический объект.

Применение аддитивных технологий решает такие задачи цифровых производств, какмодернизация и автоматизация действующих и проектирование новых эффективных машиностроительных производств различного назначения, средств и систем их оснащения, а также производственных и технологических процессов с использованием автоматизированных систем технологической подготовки производства.


Аддитивные технологии с полным основанием относят к технологиям XXI века. Они имеют огромный потенциал в деле снижения энергетических затрат на создание самых разнообразных видов продукции. Степень их использования в промышленном производстве является верным индикатором индустриальной мощи государства и его инновационного развития. На данный момент российские предприятия используют импортные металлические порошки. Серийного производства порошковых материалов для аддитивных технологий в России нет.

Исследовательская группа «Инфомайн»
Основана в 1993 году. Специализируется на изучении рынков промышленной продукции в России и странах СНГ. Основными направлениями исследований являются: минеральное сырье, металлы и химические продукты. За прошедшие годы специалистами компании подготовлено свыше 1000 обзоров. Клиентами «Инфомайн» являются более 500 производственных, торговых, консалтинговых компаний, банков и научных организаций из 37 стран мира. Среди них: «Газпром», «Лукойл», ТНК-ВР, АФК «Система», ГМК «Норильский никель», «Евраз Груп С. А.», Объединенная компания «Русал» и др. Профессионализм компании подтверждается многочисленными публикациями в научных и научно-популярных журналах, а также выступлениями на конференциях различного уровня.

Металлические порошки обладают уникальными химико-металлургическими свойствами, что позволяет использовать их в различных областях. С появлением аддитивных технологий порошковая металлургия получила новые перспективы развития. Порошковая металлургия является наиболее экономичным методом изготовления изделий, она характеризуется низким уровнем отходов по сравнению с традиционными технологиями (литьем, механической обработкой, холодной и горячей обработкой давлением) и минимальным количеством операций для получения изделий с размерами, близкими к окончательным. Другая особенность порошковой металлургии - возможность производства материалов и изделий, которые невозможно получить традиционными металлургическими методами. С помощью аддитивных технологий упрощаются производственные процессы в авиационной промышленности, энергомашиностроении, приборостроении - везде, где есть потребность в изделиях сложной геометрии и «выращивании» металлических деталей. В настоящее время с точки зрения внедрения аддитивных технологий Россия отстает от ведущих стран мира. По-прежнему российские потребители зависят как от поставок импортных высококачественных металлических порошков, так и от импорта самих 3D-принтеров.

Состояние аддитивных технологий в мире
Технология трехмерной печати (3D) начала развиваться в конце 80-х годов прошлого века. Пионером в этой области является компания 3D Systems, которая в 1986 году разработала первый стереолитографический аппарат. Первые лазерные машины - стереолитографические (SLA) и затем порошковые (SLS-машины) - отличались очень высокой стоимостью, выбор материалов был достаточно узкий, и до середины 1990-х годов они использовались главным образом в научно-исследовательской и опытно-конструкторской деятельности, связанной с оборонной промышленностью. В дальнейшем, после широкого распространения цифровых технологий в области проектирования, моделирования и механообработки, 3D-технологии начали бурно развиваться. Для 3D-технологий в настоящее время рекомендован термин Additive Manufacturing (AM). По данным Wohlers Associates, мировой рынок АМ-технологий в 2014 году составил около 3 млрд долларов при средних темпах роста на уровне 20–30%. Прогнозируется, что к 2020 году объем рынка может достичь 16 млрд долларов. Рынок аддитивных технологий стремительно меняется, происходит слияние и поглощение компаний-производителей машин, возникают новые центры оказания услуг в области AM-технологий, эти центры объединяются в европейскую, а теперь уже и в глобальную сеть. 63% всех аддитивных машин в мире производится в США. Наиболее заметно внедрение АМ-технологий в таких отраслях, как авиационная промышленность, судостроение, энергетическое машиностроение, а также стоматология и восстановительная хирургия. Главными заказчиками и потребителями AM-продукции являются авиационная и автомобильная отрасли США и Европы. Эти технологии привлекают крупные промышленные компании: Boeing, Mersedes, General Electric, Lockheed Martin, Mitsubishi, General Motors. Например, компания Boeing в последние годы значительно увеличила номенклатуру деталей, изготавливаемых по AM-технологиям. Сейчас таким образом изготавливается более 22 тысяч деталей 300 наименований для 10 типов военных и коммерческих самолетов, включая Dreamliner. Отказ от производства цельнометаллического листа в пользу спекания порошков при формировании каркасов ряда моделей Boeing позволил компании перейти на принципиально новый уровень производства. По мнению специалистов General Electric, через 10 лет примерно половина деталей энергетических турбин и авиационных двигателей будет изготавливаться с помощью AM-технологий. Активно применяются аддитивные технологии в бытовой электронике и медицине, в том числе в стоматологии. По словам представителей компании Arcam, произведенные ими устройства были использованы для создания более 30 000 титановых имплантатов для реконструкции тазобедренных суставов. Основным отличием АМ-технологий является то, что они применяются для формирования детали при помощи наращивания материала, в отличие от удаления в случае механической обработки. Использование аддитивных технологий позволяет изготавливать детали с характеристиками, недоступными для других методов обработки (например, с криволинейными отверстиями или внутренними пустотами). Послойный метод построения детали дает абсолютно новые возможности, например изготовление «деталь в детали», деталей с переменными по толщине свойствами материала (так называемые градиентные материалы), выпуск сетчатых конструкций, которые невозможно получить ни литьем, ни механообработкой. Значительные перспективы для 3D-технологий открываются в аэрокосмической отрасли. Это связано с тем, что с их помощью стало возможным кардинально уменьшить отношение массы материала, необходимого для выпуска детали, к массе конечной детали. Для большинства деталей, изготавливаемых традиционным способом, это соотношение может достигать 20:1, при использовании аддитивных технологий этот показатель составляет в худшем случае 2:1.


Рис. 1. Аппарат селективного лазерного сплавления SLM 280 компании SLM Solutions (Германия)

Почти все компании, использующие лазер, по-разному называют свои технологии. Это сделано для того, чтобы отличить себя от конкурентов, но по технической сути все они являются технологиями селективного лазерного сплавления - SLM-технологиями. Однако это название негласно закреплено за компанией SLM Solutions. Компания SLM Solutions (Германия) является одним из мировых лидеров в области технологий лазерного синтеза. SLM Solutions активно сотрудничает с компанией FILT. В результате этого сотрудничества появилась наиболее «продвинутая» на сегодняшний день машина SLM 280 (рис. 1). Этот аппарат отличается наличием двух лазеров: внешний контур детали и тонкие стенки обрабатывает первый лазер мощностью 400 Вт, основное тело детали - второй, более мощный лазер (1000 Вт). Сочетание двух лазеров разной мощности позволяет выпускать детали с толщиной отдельных фрагментов до 0,3 мм. Это также придает аппарату существенные преимущества: увеличивается скорость построения детали (до 5 раз), улучшается внутренняя структура материала и чистота внешней поверхности.

Виды аддитивных технологий
По методам формирования слоя принципиально отличаются два вида аддитивных технологий. Технология Bed Deposition предполагает на первом этапе формирование слоя порошка с последующей выборочной (селективной) обработкой сформированного слоя лазером или иным способом. Этой технологии достаточно точно соответствует термин «селективный синтез» или «селективное лазерное спекание» (SLS - Selective Laser Sintering), если «отверждающим» инструментом является лазер, который в данном случае, в отличие от лазерной стереолитографии (SLA-технологии), является источником тепла, а не ультрафиолетового излучения. Второй вид Direct Deposition - прямое, или непосредственное, осаждение материала, т. е. непосредственно в точку, куда подводится энергия и где в данный момент происходит построение фрагмента детали. Наиболее широко на рынке представлены модели группы Bed Deposition. Большая часть компаний - производителей таких аппаратов использует в своих машинах лазер в качестве источника энергии для соединения частиц металлопорошковых композиций. К ним относятся: Arcam (Швеция), Concept Laser (Германия), EOS (Германия), Phenix Systems (Франция), Realizes (Германия), Renishaw (Великобритания), SLM Solutions (Германия), Systems (США). В 2012 году в эту группу вошли китайские компании Beijing Long Yuan Automated Fabrication Systems и Trump Precision Machinery. Ко второй группе машин (Direct Deposition) относятся аппараты компаний POM Group, Optomec, Sciaky (США), Irepa Laser (Франция), InssTek (Ю. Корея). В России отсутствует серийное производство АМ-машин, которые используют в качестве материала металлические порошки. Вместе с тем целый ряд организаций занимается разработкой и созданием опытных образцов подобного типа аппаратов. Например, ОАО «Электромеханика» (Тверская область) в рамках совместной работы с ФГБОУ ВПО «МГТУ «СТАНКИН» изготовило автоматизированную 3D-установку для выращивания в вакууме точных титановых заготовок сложных деталей методом послойного синтеза электронным лучом из металлического мелкодисперсного порошка. ОАО «ТВЭЛ» совместно с научными организациями Уральского отделения РАН ведет разработку и организацию производства установок УрАМ-550 для селективного лазерного сплавления металлических порошков с размером рабочей камеры 500×500×500 мм. «Росатом» в кооперации с Минобрнауки планирует создать опытный образец 3D-принтера для изготовления металлических изделий на базе НПО «ЦНИИТМАШ». Специалистами ОАО «Национальный институт авиационных технологий» разработаны несколько типов экспериментальных лазерных установок послойного синтеза. Разработки аппаратов для лазерного послойного синтеза ведутся также Институтом проблем лазерных и информационных технологий (ИПЛИТ).



Рис. 2. АM-машина X line 1000R компании Concept Laser

До недавнего времени самой большой AM-машиной компании считалась X line 1000R (рис. 2) с размерами зоны построения 630×400×500 мм. Она была разработана совместно с Фраунхоферским институтом лазерных технологий (FILT) при участии Daimler AG и вышла на рынок в 2013 году. Первая такая машина установлена на Daimler AG для выращивания автомобильных компонентов из алюминия. К этой модели недавно была добавлена модификация X line 2000R, оснащенная двумя лазерами мощностью по 1000 Вт. Область построения увеличена до 800×400×500 мм. Компания пошла навстречу требованиям клиентов из аэрокосмической и автомобильной отраслей, повысив скорость построения изделий.



Рис. 3. Аппарат DMD IC106 компании POM

Компания POM (Precision Optical Manufacturing) является разработчиком DMD-технологии и держателем патентов на оригинальные технические решения по лазерным системам и системам управления с обратной связью с одновременным регулированием в режиме реального времени основных параметров построения детали: объема подачи материала, скорости перемещения головки и мощности лазера, которые обеспечивают стабильность и качество рабочего процесса (рис. 3). Эта технология позволяет производить параллельную или последовательную подачу двух видов материала с различными физико-химическими свойствами и таким образом создавать биметаллические компоненты, например формы для литья пластмасс (тело формы из меди, рабочая часть - из инструментальной стали), или наносить специальные покрытия, например на гильзы цилиндров, поршневые кольца, кулачковые валы, седла клапанов.

Технологии производства металлических порошков

В настоящее время не существует общих требований к металлопорошковым композициям, применяемым в AM-технологиях. Разные компании - производители AM-машин предписывают работу с определенным перечнем материалов, обычно поставляемых самой этой компанией. Общим требованием к порошкам для AM-машин является сферическая форма частиц. Это связано с необходимостью компактного укладывания в определенный объем и обеспечения «текучести» порошковой композиции в системах подачи материала с минимальным сопротивлением. На рынке представлены десятки видов разнообразных композиций: от обычных конструкционных сталей до жаропрочных сплавов и драгметаллов. Сфера их применения уже в настоящее время крайне разнообразна - от стоматологии до ювелирной промышленности. Основными технологиями получения порошков для AM-машин являются газовая атомизация, вакуумная атомизация и центробежная атомизация. Согласно технологии газовой атомизации металл расплавляют в плавильной камере (обычно в вакууме или инертной среде) и затем сливают в управляемом режиме через специальное устройство-распылитель, где производится разрушение потока жидкого металла струей инертного газа под давлением. В Европе три компании - ALD (Голландия), PSI - Phoenix Scientific Industries Ltd. (Великобритания) и Atomising Systems (Великобритания) - производят атомайзеры в качестве товарной продукции. При вакуумной атомизации процесс происходит за счет растворенного в расплаве газа. Атомайзер состоит из двух камер - плавильной и распылительной. В плавильной камере создают избыточное давление газа (водород, гелий, азот), который растворяется в расплаве. Во время атомизации металл под действием давления в плавильной камере поступает вверх к сопловому аппарату, выходящему в распылительную камеру, где создают вакуум. Возникающий перепад давлений побуждает растворенный газ к выходу на поверхность капель расплава и «взрывает» капли изнутри, обеспечивая при этом сферическую форму и мелкодисперсную структуру порошка. Технологии центробежной атомизации весьма разнообразны, но наибольший интерес представляют те, которые позволяют получать порошки наиболее ценных для аддитивных технологий сплавов - реактивных и тугоплавких металлов. Единственным сдерживающим фактором развития аддитивных технологий является высокая стоимость расходных материалов (металлических порошков). В настоящее время рядом компаний ведутся работы по внедрению менее затратных технологий производства порошков (в том числе титановых). Прорыв в этом направлении приведет к значительному росту спроса на 3D-устройства, способные воспроизводить металлические модели.




Рис. 4. Атомайзер EIGA 50 компании ALD (Голландия)

Мировым лидером в производстве оборудования для газовой атомизации является компания ALD (в настоящее время входит в группу AMG Advanced Metallurgical Group). Она имеет в своей производственной линейке атомайзеры как лабораторного (объем тигля 1,0–2,0 л), так и индустриального назначения с производительностью до 500 кг за одну плавку и более. Компания ALD является также изготовителем атомайзеров для получения порошковых композиций по технологии EIGA - индукционная плавка с распылением инертным газом. Базовые модели EIGA 50 и EIGA 100 отличаются размерами применяемого фидстока - прутка соответственно 50 и 100 мм. Машины EIGA (рис. 4) имеют невысокую скорость распыления - около 0,5 кг/с, однако позволяют распылять достаточно большой объем материала в течение одной плавки - от единиц до десятков килограммов.

Рис. 5. Установка центробежного распыления расплава ООО «Сферамет»

В России имеется опыт получения порошковых материалов методом центробежного распыления с торца прутковой заготовки, оплавляемой плазменной дугой. Метод был разработан в 1970-х годах в ВИЛСе. В последние годы этот метод получил дальнейшее развитие в работах OOO «Сферамет» (Московская область). ООО «Сферамет» является разработчиком оборудования и технологий нового поколения для получения сферических гранул металлов и сплавов методом центробежного распыления расплава. Исходным материалом для получения гранул на разработанной установке УЦР-6 (рис. 5) служат литые цилиндрические заготовки диаметром 76-80 мм и длиной 700 мм. На этой установке были получены гранулы дисперсностью 50 мкм.

Выпуск металлических порошков для аддитивных технологий в России
Интенсивное использование аддитивных технологий в России сдерживается как отсутствием АМ-машин, так и отсутствием мелкодисперсных металлических порошков. В настоящее время российские предприятия используют импортные порошки, поставляемые в основном компаниями - производителями установок. Серийное производство металлических порошков для аддитивных технологий в России отсутствует. ФГУП «Всероссийский институт авиационных материалов» (ВИАМ, Москва) производит в относительно небольших количествах металлопорошковые композиции для аддитивных технологий. В ближайшее время здесь планируются запуск современного промышленного оборудования и коммерческий выпуск порошков. По мнению генерального директора ВИАМ академика Е.Н. Каблова, для имеющегося российского парка установок аддитивного производства необходимо около 20 тонн порошков в год. По оценкам компании «Инфомайн», этот объем завышен, и общая емкость рынка порошков для работающих установок аддитивных технологий в России составляет на начало 2016 года не более 6–7 тонн. Целый ряд российских компаний занимаются в настоящее время вопросами производства металлических порошков для аддитивных технологий. По оценкам экспертов, уже в 2016 году на отечественном рынке могут появиться прошедшие сертификацию коммерческие металлопорошковые композиции различных марок. В настоящее время ВИАМ самостоятельно обеспечивает себя порошками, однако мощности небольшие (до 2 тонн в год). Движение ВИАМ к производству порошков для аддитивных технологий началось с организации производства припоев для высокотемпературной вакуумной пайки. Требования к порошковым припоям близки к аналогичным требованиям, предъявляемым к металлопорошковым композициям, используемым при аддитивных технологиях, в том числе по сочетанию фракций разного размера. С 2010 года ВИАМ активно ведет работы по созданию производства мелкодисперсных металлических порошков распылением расплава инертным газом на установке ERMIGA10/100VI. Разработаны и освоены технологии получения порошков более 10 марок никелевых и титановых припоев (10–200 мкм). Были начаты серийные поставки припоев моторным заводам. Ведутся работы по получению мелкодисперсных порошков для аддитивных технологий. Порошки для лазерной LMD-наплавки (40–80 мкм) поставляются в ОАО «Авиадвигатель», на котором проводятся работы по отработке технологий наплавки бородок бандажных полок лопаток ТВД. Ведутся работы по получению порошков для селективного лазерного сплавления (20–40, 10–50 мкм).



Рис. 6. Установка послойного лазерного сплавления M2 Cusing компании Concept Laser

В 2014 году ВИАМ приобрел установку для селективного лазерного сплавления металлических порошков Concept Laser M2 Cusing (рис. 6), позволяющую получать детали практически любой сложности внутреннего строения напрямую из металлических порошков без использования оснастки. Начаты исследования в области получения деталей по полному циклу, что обеспечит в дальнейшем ускорение внедрения аддитивных технологий в производство. Также в ФГУП «ВИАМ» методом послойного лазерного сплавления на установке M2 Cusing фирмы Concept Laser из порошка ЭП648-ВИ (ВХ4Л) начато изготовление завихрителей для двигателей 100-07, 100-08, 100-09. В рамках НИР по заказу Федерального космического агентства проведены работы, показавшие возможность получения порошков (гранул) на основе никеля и титана для проведения селективного лазерного сплавления.

Аддитивные технологии в «росатоме»: цикл от порошков до применения

Рис. 7. Дорожная карта развития аддитивных технологий «Росатома»

Импорт в Россию аппаратов для аддитивных технологий
Россия удовлетворяет потребности в 3D-принтерах, работающих на металлических порошках, за счет импорта этой продукции. По данным «Инфомайн», Россия импортировала в 2009–2015 годах 29 установок для аддитивных технологий на металлических порошках на сумму около 12 млн долларов. При этом характерным является тренд на рост импортных поставок (рис. 10). Как видно, 2014 и 2015 годы характеризовались наивысшим уровнем поставок на сумму свыше 200 тыс. долларов.




Рис. 8. Атомайзер ALD VIGA-2B

Научный центр порошкового материаловедения (НЦПМ) при Пермском научно-исследовательском политехническом университете (ПНИПУ) приобрел в 2011 году атомайзер ALD VIGA-2B (рис. 8). В апреле 2014 года АМ-машина была запущена. Установка предназначена для исследований и получения небольших экспериментальных партий порошков. Она позволяет распылять все нетугоплавкие металлы и сплавы с температурой плавления до 1700 °C. По словам специалистов Научного центра, порошки получаются сферические, но неоднород-ные - крупностью от 0,5 до 100 мкм.


Рис. 9. Структура поставки в РФ 3D-принтеров основными зарубежными производителями в 2009–2015 гг., %