Доверительный интервал.  Методы количественного анализа: Оценка доверительных интервалов Как рассчитать доверительный интервал для разницы значений

В предыдущих подразделах мы рассмотрели вопрос об оценке неизвестного параметра а одним числом. Такая оценка называется «точечной». В ряде задач требуется не только найти для параметра а подходящее численное значение, но и оценить его точность и надежность. Требуется знать, к каким ошибкам может привести замена параметра а его точечной оценкой а и с какой степенью уверенности можно ожидать, что эти ошибки не выйдут за известные пределы?

Такого рода задачи особенно актуальны при малом числе наблюдений, когда точечная оценка а в значительной мере случайна и приближенная замена а на а может привести к серьезным ошибкам.

Чтобы дать представление о точности и надежности оценки а ,

в математической статистике пользуются так называемыми доверительными интервалами и доверительными вероятностями.

Пусть для параметра а получена из опыта несмещенная оценка а. Мы хотим оценить возможную при этом ошибку. Назначим некоторую достаточно большую вероятность р (например, р = 0,9, 0,95 или 0,99) такую, что событие с вероятностью р можно считать практически достоверным, и найдем такое значение s, для которого

Тогда диапазон практически возможных значений ошибки, возникающей при замене а на а , будет ± s; большие по абсолютной величине ошибки будут появляться только с малой вероятностью а = 1 - р. Перепишем (14.3.1) в виде:

Равенство (14.3.2) означает, что с вероятностью р неизвестное значение параметра а попадает в интервал

При этом необходимо отметить одно обстоятельство. Ранее мы неоднократно рассматривали вероятность попадания случайной величины в заданный неслучайный интервал. Здесь дело обстоит иначе: величина а не случайна, зато случаен интервал / р. Случайно его положение на оси абсцисс, определяемое его центром а ; случайна вообще и длина интервала 2s, так как величина s вычисляется, как правило, по опытным данным. Поэтому в данном случае лучше будет толковать величину р не как вероятность «попадания» точки а в интервал / р, а как вероятность того, что случайный интервал / р накроет точку а (рис. 14.3.1).

Рис. 14.3.1

Вероятность р принято называть доверительной вероятностью , а интервал / р - доверительным интервалом . Границы интервала If. а х =а- s и а 2 = а + а называются доверительными границами.

Дадим еще одно истолкование понятию доверительного интервала: его можно рассматривать как интервал значений параметра а, совместимых с опытными данными и не противоречащих им. Действительно, если условиться считать событие с вероятностью а = 1-р практически невозможным, то те значения параметра а, для которых а - а > s, нужно признать противоречащими опытным данным, а те, для которых |а - а a t na 2 .

Пусть для параметра а имеется несмещенная оценка а. Если бы нам был известен закон распределения величины а , задача нахождения доверительного интервала была бы весьма проста: достаточно было бы найти такое значение s, для которого

Затруднение состоит в том, что закон распределения оценки а зависит от закона распределения величины X и, следовательно, от его неизвестных параметров (в частности, и от самого параметра а).

Чтобы обойти это затруднение, можно применить следующий грубо приближенный прием: заменить в выражении для s неизвестные параметры их точечными оценками. При сравнительно большом числе опытов п (порядка 20...30) этот прием обычно дает удовлетворительные по точности результаты.

В качестве примера рассмотрим задачу о доверительном интервале для математического ожидания.

Пусть произведено п X, характеристики которой - математическое ожидание т и дисперсия D - неизвестны. Для этих параметров получены оценки:

Требуется построить доверительный интервал / р, соответствующий доверительной вероятности р, для математического ожидания т величины X.

При решении этой задачи воспользуемся тем, что величина т представляет собой сумму п независимых одинаково распределенных случайных величин X h и согласно центральной предельной теореме при достаточно большом п ее закон распределения близок к нормальному. На практике даже при относительно небольшом числе слагаемых (порядка 10...20) закон распределения суммы можно приближенно считать нормальным. Будем исходить из того, что величина т распределена по нормальному закону. Характеристики этого закона - математическое ожидание и дисперсия - равны соответственно т и

(см. главу 13 подраздел 13.3). Предположим, что величина D нам известна и найдем такую величину Ер, для которой

Применяя формулу (6.3.5) главы 6, выразим вероятность в левой части (14.3.5) через нормальную функцию распределения

где - среднее квадратичное отклонение оценки т.

Из уравнения

находим значение Sp:

где arg Ф* (х) - функция, обратная Ф* (х), т.е. такое значение аргумента, при котором нормальная функция распределения равна х.

Дисперсия D, через которую выражена величина а 1П, нам в точности не известна; в качестве ее ориентировочного значения можно воспользоваться оценкой D (14.3.4) и положить приближенно:

Таким образом, приближенно решена задача построения доверительного интервала, который равен:

где gp определяется формулой (14.3.7).

Чтобы избежать при вычислении s p обратного интерполирования в таблицах функции Ф* (л), удобно составить специальную таблицу (табл. 14.3.1), где приводятся значения величины

в зависимости от р. Величина (р определяет для нормального закона число средних квадратических отклонений, которое нужно отложить вправо и влево от центра рассеивания для того, чтобы вероятность попадания в полученный участок была равна р.

Через величину 7 р доверительный интервал выражается в виде:

Таблица 14.3.1

Пример 1. Проведено 20 опытов над величиной X; результаты приведены в табл. 14.3.2.

Таблица 14.3.2

Требуется найти оценку от для математического ожидания от величины X и построить доверительный интервал, соответствующий доверительной вероятности р = 0,8.

Решение. Имеем:

Выбрав за начало отсчета л: = 10, по третьей формуле (14.2.14) находим несмещенную оценку D :

По табл. 14.3,1 находим

Доверительные границы:

Доверительный интервал:

Значения параметра т, лежащие в этом интервале, являются совместимыми с опытными данными, приведенными в табл. 14.3.2.

Аналогичным способом может быть построен доверительный интервал и для дисперсии.

Пусть произведено п независимых опытов над случайной величиной X с неизвестными параметрами от и Л, и для дисперсии D получена несмещенная оценка:

Требуется приближенно построить доверительный интервал для дисперсии.

Из формулы (14.3.11) видно, что величина D представляет собой

сумму п случайных величин вида . Эти величины не являются

независимыми, так как в любую из них входит величина т, зависящая от всех остальных. Однако можно показать, что при увеличении п закон распределения их суммы тоже приближается к нормальному. Практически при п = 20...30 он уже может считаться нормальным.

Предположим, что это так, и найдем характеристики этого закона: математическое ожидание и дисперсию. Так как оценка D - несмещенная, то М[D] = D.

Вычисление дисперсии D D связано со сравнительно сложными выкладками, поэтому приведем ее выражение без вывода:

где ц 4 - четвертый центральный момент величины X.

Чтобы воспользоваться этим выражением, нужно подставить в него значения ц 4 и D (хотя бы приближенные). Вместо D можно воспользоваться его оценкой D . В принципе четвертый центральный момент тоже можно заменить его оценкой, например величиной вида:

но такая замена даст крайне невысокую точность, так как вообще при ограниченном числе опытов моменты высокого порядка определяются с большими ошибками. Однако на практике часто бывает, что вид закона распределения величины X известен заранее: неизвестны лишь его параметры. Тогда можно попытаться выразить ц 4 через D.

Возьмем наиболее часто встречающийся случай, когда величина X распределена по нормальному закону. Тогда ее четвертый центральный момент выражается через дисперсию (см. главу 6 подраздел 6.2);

и формула (14.3.12) дает или

Заменяя в (14.3.14) неизвестное D его оценкой D , получим: откуда

Момент ц 4 можно выразить через D также и в некоторых других случаях, когда распределение величины X не является нормальным, но вид его известен. Например, для закона равномерной плотности (см. главу 5) имеем:

где (а, Р) - интервал, на котором задан закон.

Следовательно,

По формуле (14.3.12) получим: откуда находим приближенно

В случаях, когда вид закона распределения величины 26 неизвестен, при ориентировочной оценке величины а /} рекомендуется все же пользоваться формулой (14.3.16), если нет специальных оснований считать, что этот закон сильно отличается от нормального (обладает заметным положительным или отрицательным эксцессом).

Если ориентировочное значение а /} тем или иным способом получено, то можно построить доверительный интервал для дисперсии аналогично тому, как мы строили его для математического ожидания:

где величина в зависимости от заданной вероятности р находится по табл. 14.3.1.

Пример 2. Найти приближенно 80%-й доверительный интервал для дисперсии случайной величины X в условиях примера 1, если известно, что величина X распределена по закону, близкому к нормальному.

Решение. Величина остается той же, что в табл. 14.3.1:

По формуле (14.3.16)

По формуле (14.3.18) находим доверительный интервал:

Соответствующий интервал значений среднего квадратичного отклонения: (0,21; 0,29).

14.4. Точные методы построения доверительных интервалов для параметров случайной величины, распределенной по нормальному закону

В предыдущем подразделе мы рассмотрели грубо приближенные методы построения доверительных интервалов для математического ожидания и дисперсии. Здесь мы дадим представление о точных методах решения той же задачи. Подчеркнем, что для точного нахождения доверительных интервалов совершенно необходимо знать заранее вид закона распределения величины X, тогда как для применения приближенных методов это не обязательно.

Идея точных методов построения доверительных интервалов сводится к следующему. Любой доверительный интервал находится из условия, выражающего вероятность выполнения некоторых неравенств, в которые входит интересующая нас оценка а. Закон распределения оценки а в общем случае зависит от неизвестных параметров величины X. Однако иногда удается перейти в неравенствах от случайной величины а к какой-либо другой функции наблюденных значений Х п Х 2 , ..., X п. закон распределения которой не зависит от неизвестных параметров, а зависит только от числа опытов и и от вида закона распределения величины X. Такого рода случайные величины играют большую роль в математической статистике; они наиболее подробно изучены для случая нормального распределения величины X.

Например, доказано, что при нормальном распределении величины X случайная величина

подчиняется так называемому закону распределения Стъюдента с п - 1 степенями свободы; плотность этого закона имеет вид

где Г (х) - известная гамма-функция:

Доказано также, что случайная величина

имеет «распределение % 2 » с п - 1 степенями свободы (см. главу 7), плотность которого выражается формулой

Не останавливаясь на выводах распределений (14.4.2) и (14.4.4), покажем, как их можно применить при построении доверительных интервалов для параметров ти D .

Пусть произведено п независимых опытов над случайной величиной X, распределенной по нормальному закону с неизвестными параметрами тиО. Для этих параметров получены оценки

Требуется построить доверительные интервалы для обоих параметров, соответствующие доверительной вероятности р.

Построим сначала доверительный интервал для математического ожидания. Естественно этот интервал взять симметричным относительно т ; обозначим s p половину длины интервала. Величину s p нужно выбрать так, чтобы выполнялось условие

Попытаемся перейти в левой части равенства (14.4.5) от случайной величины т к случайной величине Т, распределенной по закону Стьюдента. Для этого умножим обе части неравенства |m-w?|

на положительную величину: или, пользуясь обозначением (14.4.1),

Найдем такое число / р, что Величина / р найдется из условия

Из формулы (14.4.2) видно, что (1) - четная функция, поэтому (14.4.8) дает

Равенство (14.4.9) определяет величину / р в зависимости от р. Если иметь в своем распоряжении таблицу значений интеграла

то величину / р можно найти обратным интерполированием в таблице. Однако удобнее составить заранее таблицу значений / р. Такая таблица дается в приложении (табл. 5). В этой таблице приведены значения в зависимости от доверительной вероятности р и числа степеней свободы п - 1. Определив / р по табл. 5 и полагая

мы найдем половину ширины доверительного интервала / р и сам интервал

Пример 1. Произведено 5 независимых опытов над случайной величиной X, распределенной нормально с неизвестными параметрами т и о. Результаты опытов приведены в табл. 14.4.1.

Таблица 14.4.1

Найти оценку т для математического ожидания и построить для него 90%-й доверительный интервал / р (т.е. интервал, соответствующий доверительной вероятности р = 0,9).

Решение. Имеем:

По таблице 5 приложения для п - 1 = 4 и р = 0,9 находим откуда

Доверительный интервал будет

Пример 2. Для условий примера 1 подраздела 14.3, предполагая величину X распределенной нормально, найти точный доверительный интервал.

Решение. По таблице 5 приложения находим при п - 1 = 19ир =

0,8 / р =1,328; отсюда

Сравнивая с решением примера 1 подраздела 14.3 (е р = 0,072), убеждаемся, что расхождение весьма незначительно. Если сохранить точность до второго знака после запятой, то доверительные интервалы, найденные точным и приближенным методами, совпадают:

Перейдем к построению доверительного интервала для дисперсии. Рассмотрим несмещенную оценку дисперсии

и выразим случайную величину D через величину V (14.4.3), имеющую распределение х 2 (14.4.4):

Зная закон распределения величины V, можно найти интервал / (1 , в который она попадает с заданной вероятностью р.

Закон распределения k n _ x {v) величины I 7 имеет вид, изображенный на рис. 14.4.1.

Рис. 14.4.1

Возникает вопрос: как выбрать интервал / р? Если бы закон распределения величины V был симметричным (как нормальный закон или распределение Стьюдента), естественно было бы взять интервал /р симметричным относительно математического ожидания. В данном случае закон к п _ х (v) несимметричен. Условимся выбирать интервал /р так, чтобы вероятности выхода величины V за пределы интервала вправо и влево (заштрихованные площади на рис. 14.4.1) были одинаковы и равны

Чтобы построить интервал / р с таким свойством, воспользуемся табл. 4 приложения: в ней приведены числа у} такие, что

для величины V, имеющей х 2 -распределение с г степенями свободы. В нашем случае г = п - 1. Зафиксируем г = п - 1 и найдем в соответствующей строке табл. 4 два значения х 2 - одно, отвечающее вероятности другое - вероятности Обозначим эти

значения у 2 и xl ? Интервал имеет у 2 , своим левым, а у ~ правым концом.

Теперь найдем по интервалу / р искомый доверительный интервал /|, для дисперсии с границами D, и D 2 , который накрывает точку D с вероятностью р:

Построим такой интервал / (, = (?> ь А), который накрывает точку D тогда и только тогда, когда величина V попадает в интервал / р. Покажем, что интервал

удовлетворяет этому условию. Действительно, неравенства равносильны неравенствам

а эти неравенства выполняются с вероятностью р. Таким образом, доверительный интервал для дисперсии найден и выражается формулой (14.4.13).

Пример 3. Найти доверительный интервал для дисперсии в условиях примера 2 подраздела 14.3, если известно, что величинаX распределена нормально.

Решение. Имеем . По таблице 4 приложения

находим при г = п - 1 = 19

По формуле (14.4.13) находим доверительный интервал для дисперсии

Соответствующий интервал для среднего квадратичного отклонения: (0,21; 0,32). Этот интервал лишь незначительно превосходит полученный в примере 2 подраздела 14.3 приближенным методом интервал (0,21; 0,29).

  • На рисунке 14.3.1 рассматривается доверительный интервал, симметричный относительно а. Вообще, как мы увидим дальше, это необязательно.

Пусть у нас имеется большое количество предметов, с нормальным распределением некоторых характеристик (например, полный склад однотипных овощей, размер и вес которых варьируется). Вы хотите знать средние характеристики всей партии товара, но у Вас нет ни времени, ни желания измерять и взвешивать каждый овощ. Вы понимаете, что в этом нет необходимости. Но сколько штук надо было бы взять на выборочную проверку? Прежде, чем дать несколько полезных для этой ситуации формул напомним некоторые обозначения. Во-первых, если бы мы все-таки промерили весь склад овощей (это множество элементов называется генеральной совокупностью), то мы узнали бы со всей доступной нам точностью среднее значение веса всей партии. Назовем это среднее значение Х ср.ген . - генеральным средним. Мы уже знаем, что определяется полностью, если известно его среднее значение и отклонение s. Правда, пока мы ни Х ср.ген., ни s генеральной совокупности не знаем. Мы можем только взять некоторую выборку, замерить нужные нам значения и посчитать для этой выборки как среднее значение Х ср.выб., так и среднее квадратическое отклонение S выб. Известно, что если наша выборочная проверка содержит большое количество элементов (обычно n больше 30), и они взяты действительно случайным образом, то s генеральной совокупности почти не будет отличаться от S выб Кроме того, для случая нормального распределения мы можем пользоваться следующими формулами:

С вероятностью 95%

С вероятностью 99%

.

В общем виде c вероятностью Р(t)

Связь значения t со значением вероятности Р(t), с которой мы хотим знать доверительный интервал, можно взять из следующей таблицы:

P(t) 0,683 0,950 0,954 0,990 0,997
t 1,00 1,96 2,00 2,58 3,00

Таким образом, мы определили, в каком диапазоне находится среднее значение для генеральной совокупности (с данной вероятностью).

Если у нас нет достаточно большой выборки, мы не можем утверждать, что генеральная совокупность имеет s = S выб. Кроме того, в этом случае проблематична близость выборки к нормальному распределению. В этом случае также пользуются S выб вместо s в формуле:

но значение t для фиксированной вероятности Р(t) будет зависеть от количества элементов в выборке n. Чем больше n, тем ближе будет полученный доверительный интервал к значению, даваемому формулой (1). Значения t в этом случае берутся из другой таблицы (t-критерий Стьюдента), которую мы приводим ниже:

Значения t-критерия Стьюдента для вероятности 0,95 и 0,99  

n P n P
0.95 0.99 0.95 0.99
2 12.71 63.66 18 2.11 2.90
3 4.30 9.93 19 2.10 2.88
4 3.18 5.84 20 2.093 2.861
5 2.78 4.60 25 2.064 2.797
6 2.57 4.03 30 2.045 2.756
7 2.45 3.71 35 2.032 2.720
8 2.37 3.50 40 2.022 2.708
9 2.31 3.36 45 2.016 2.692
10 2.26 3.25 50 2.009 2.679
11 2.23 3.17 60 2.001 2.662
12 2.20 3.11 70 1.996 2.649
13 2.18 3.06 80 1.991 2.640
14 2.16 3.01 90 1.987 2.633
15 2.15 2.98 100 1.984 2.627
16 2.13 2.95 120 1.980 2.617
17 2.12 2.92 >120 1.960 2.576

Пример 3. Из работников фирмы случайным образом отобрано 30 человек. По выборке оказалось, что средняя зарплата (в месяц) составляет 10 тыс. рублей при среднем квадратическом отклонении 3 тыс. рублей. С вероятностью 0,99 определить среднюю зарплату в фирме. Решение: По условию имеем n = 30, Х ср. =10000, S=3000, Р = 0,99. Для нахождения доверительного интервала воспользуемся формулой, соответствующей критерию Стьюдента. По таблице для n = 30 и Р = 0,99 находим t=2,756, следовательно,

т.е. искомый доверительный интервал 27484 < Х ср.ген < 32516.

Итак, с вероятностью 0,99 можно утверждать, что интервал (27484; 32516) содержит внутри себя среднюю зарплату в фирме.
Мы надеемся, что Вы будете пользоваться этим методом, при этом не обязательно, чтобы при Вас каждый раз была таблица. Подсчеты можно проводить в Excel автоматически. Находясь в файле Excel, нажмите в верхнем меню кнопку fx. Затем, выберите среди функций тип "статистические", и из предложенного перечня в окошке - СТЬЮДРАСПОБР. Затем, по подсказке, поставив курсор в поле "вероятность" наберите значение обратной вероятности (т.е. в нашем случае вместо вероятности 0,95 надо набирать вероятность 0,05). Видимо, электронная таблица составлена так, что результат отвечает на вопрос, с какой вероятностью мы можем ошибиться. Аналогично в поле "степень свободы" введите значение (n-1) для своей выборки.

Доверительный интервал пришел к нам из области статистики. Это определенный диапазон, который служит для оценки неизвестного параметра с высокой степенью надежности. Проще всего это будет пояснить на примере.

Предположим, нужно исследовать какую-либо случайную величину, например, скорость отклика сервера на запрос клиента. Каждый раз, когда пользователь набирает адрес конкретного сайта, сервер реагирует на это с разной скоростью. Таким образом, исследуемое время отклика имеет случайный характер. Так вот, доверительный интервал позволяет определить границы этого параметра, и затем можно будет утверждать, что с вероятностью в 95% сервера будет находиться в рассчитанном нами диапазоне.

Или же нужно узнать, какому количеству людей известно о торговой марке фирмы. Когда будет подсчитан доверительный интервал, то можно будет, к примеру, сказать что с 95% долей вероятности доля потребителей, знающих о данной находится в диапазоне от 27% до 34%.

С этим термином тесно связана такая величина, как доверительная вероятность. Она представляет собой вероятность того, что искомый параметр входит в доверительный интервал. От этой величины зависит то, насколько большим окажется наш искомый диапазон. Чем большее значение она принимает, тем уже становится доверительный интервал, и наоборот. Обычно ее устанавливают равной 90%, 95% или 99%. Величина 95% наиболее популярна.

На данный показатель также оказывает влияние дисперсия наблюдений и Его определение основано на том предположении, что исследуемый признак подчиняется Это утверждение известно также как Закон Гаусса. Согласно ему, нормальным называется такое распределение всех вероятностей непрерывной случайной величины, которое можно описать плотностью вероятностей. Если предположение о нормальном распределении оказалось ошибочным, то оценка может оказаться неверной.

Сначала разберемся с тем, как вычислить доверительный интервал для Здесь возможны два случая. Дисперсия (степень разброса случайной величины) может быть известна либо нет. Если она известна, то наш доверительный интервал вычисляется с помощью следующей формулы:

хср - t*σ / (sqrt(n)) <= α <= хср + t*σ / (sqrt(n)), где

α - признак,

t - параметр из таблицы распределения Лапласа,

σ - квадратный корень дисперсии.

Если дисперсия неизвестна, то ее можно рассчитать, если нам известны все значения искомого признака. Для этого используется следующая формула:

σ2 = х2ср - (хср)2, где

х2ср - среднее значение квадратов исследуемого признака,

(хср)2 - квадрат данного признака.

Формула, по которой в этом случае рассчитывается доверительный интервал немного меняется:

хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n)), где

хср - выборочное среднее,

α - признак,

t - параметр, который находят с помощью таблицы распределения Стьюдента t = t(ɣ;n-1),

sqrt(n) - квадратный корень общего объема выборки,

s - квадратный корень дисперсии.

Рассмотри такой пример. Предположим, что по результатам 7 замеров была определена исследуемого признака, равная 30 и дисперсия выборки, равная 36. Нужно найти с вероятностью в 99% доверительный интервал, который содержит истинное значение измеряемого параметра.

Вначале определим чему равно t: t = t (0,99; 7-1) = 3.71. Используем приведенную выше формулу, получаем:

хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n))

30 - 3.71*36 / (sqrt(7)) <= α <= 30 + 3.71*36 / (sqrt(7))

21.587 <= α <= 38.413

Доверительный интервал для дисперсии рассчитывается как в случае с известным средним, так и тогда, когда нет никаких данных о математическом ожидании, а известно лишь значение точечной несмещенной оценки дисперсии. Мы не будем приводить здесь формулы его расчета, так как они довольно сложные и при желании их всегда можно найти в сети.

Отметим лишь, что доверительный интервал удобно определять с помощью программы Excel или сетевого сервиса, который так и называется.

Запишите задачу. Например: средний вес студента мужского пола в университете АВС составляет 90 кг . Вы будете тестировать точность предсказания веса студентов мужского пола в университете АВС в пределах данного доверительного интервала.

Составьте подходящую выборку. Вы будете использовать ее для сбора данных для тестирования гипотезы. Допустим, вы уже случайно выбрали 1000 студентов мужского пола.

Рассчитайте среднее значение и стандартное отклонение этой выборки. Выберите статистические величины (например, среднее значение и стандартное отклонение), которые вы хотите использовать для анализа вашей выборки. Вот как вычислить среднее значение и стандартное отклонение:

  • Для расчета среднего значения выборки сложите значения весов 1000 выбранных мужчин и разделите результат на 1000 (число мужчин). Допустим, получили средний вес, равный 93 кг.
  • Для расчета стандартного отклонения выборки необходимо найти среднее значение. Затем нужно вычислить дисперсию данных или среднее значение квадратов разностей от среднего. Найдя это число, просто возьмите квадратный корень из него. Допустим, в нашем примере стандартное отклонение равно 15 кг (заметим, что иногда эта информация может быть дана вместе с условием статистической задачи).
  • Выберите нужный доверительный уровень. Наиболее часто используемые доверительные уровни: 90 %, 95 % и 99 %. Он также может быть дан вместе с условием задачи. Допустим, вы выбрали 95 %.

  • Рассчитайте предел погрешности. Вы можете найти предел погрешности с помощью следующей формулы: Z a/2 * σ/√(n). Z a/2 = коэффициент доверия (где а = доверительный уровень), σ = стандартное отклонение, а n = размер выборки. Это формула показывает, что вы должны умножить критическое значение на стандартную ошибку. Вот как вы можете решить эту формулу, разбив ее на части:

    • Вычислите критическое значение или Z a/2 . Доверительный уровень равен 95 %. Преобразуйте проценты в десятичную дробь: 0,95 и разделите ее на 2, чтобы получить 0,475. Затем посмотрите в таблицу Z-оценок , чтобы найти соответствующее значение для 0,475. Вы найдете значение 1,96 (на пересечении строки 1,9 и столбца 0,06).
    • Возьмите стандартную ошибку (стандартное отклонение): 15 и разделите ее на квадратный корень из размера выборки: 1000. Вы получите: 15/31,6 или 0,47 кг.
    • Умножьте 1,96 на 0,47 (критическое значение на стандартную ошибку), чтобы получить 0,92 - предел погрешности.
  • Запишите доверительный интервал. Чтобы сформулировать доверительный интервал, просто запишите среднее значение (93) ± погрешность. Ответ: 93 ± 0,92. Вы можете найти верхнюю и нижнюю границы доверительного интервала, прибавляя и вычитая погрешность к/от средней величины. Итак, нижняя граница составляет 93 - 0,92 или 92,08, а верхняя граница составляет 93 + 0,92 или 93,92.

    • Вы можете использовать следующую формулу для вычисления доверительного интервала: x̅ ± Z a/2 * σ/√(n) , где x̅ - среднее значение.
  • Доверительный интервал – предельные значения статистической величины, которая с заданной доверительной вероятностью γ будет находится в этом интервале при выборке большего объема. Обозначается как P(θ - ε . На практике выбирают доверительную вероятность γ из достаточно близких к единице значений γ = 0.9 , γ = 0.95 , γ = 0.99 .

    Назначение сервиса . С помощью этого сервиса определяются:

    • доверительный интервал для генерального среднего, доверительный интервал для дисперсии;
    • доверительный интервал для среднего квадратического отклонения, доверительный интервал для генеральной доли;
    Полученное решение сохраняется в файле Word . Ниже представлена видеоинструкция, как заполнять исходные данные.

    Пример №1 . В колхозе из общего стада в 1000 голов овец выборочной контрольной стрижке подверглись 100 овец. В результате был установлен средний настриг шерсти 4,2 кг на одну овцу. Определить с вероятностью 0,99 среднюю квадратическую ошибку выборки при определении среднего настрига шерсти на одну овцу и пределы, в которых заключена величина настрига, если дисперсия равна 2,5 . Выборка бесповторная.
    Пример №2 . Из партии импортируемой продукции на посту Московской Северной таможни было взято в порядке случайной повторной выборки 20 проб продукта «А». В результате проверки установлена средняя влажность продукта «А» в выборке, которая оказалась равной 6 % при среднем квадратическом отклонении 1 %.
    Определите с вероятностью 0,683 пределы средней влажности продукта во всей партии импортируемой продукции.
    Пример №3 . Опрос 36 студентов показал, что среднее количество учебников, прочитанных ими за учебный год, оказалось равным 6. Считая, что количество учебников, прочитанных студентом за семестр, имеет нормальный закон распределения со средним квадратическим отклонением, равным 6, найти: А) с надежностью 0,99 интервальную оценку для математического ожидания этой случайной величины; Б) с какой вероятностью можно утверждать, что среднее количество учебников, прочитанных студентом за семестр, вычисленное по данной выборке, отклонится от математического ожидания по абсолютной величине не больше, чем на 2.

    Классификация доверительных интервалов

    По виду оцениваемого параметра:

    По типу выборки:

    1. Доверительный интервал для бесконечной выборки;
    2. Доверительный интервал для конечной выборки;
    Выборка называется повторной , если отобранный объект перед выбором следующего возвращается в генеральную совокупность. Выборка называется бесповторной , если отобранный объект в генеральную совокупность не возвращается. На практике обычно имеют дело с бесповторными выборками.

    Расчет средней ошибки выборки при случайном отборе

    Расхождение между значениями показателей, полученных по выборке, и соответствующими параметрами генеральной совокупности называется ошибкой репрезентативности .
    Обозначения основных параметров генеральной и выборочной совокупности.
    Формулы средней ошибки выборки
    повторный отбор бесповторный отбор
    для средней для доли для средней для доли
    Соотношение между пределом ошибки выборки (Δ), гарантируемым с некоторой вероятностью Р(t), и средней ошибкой выборки имеет вид: или Δ = t·μ, где t – коэффициент доверия, определяемый в зависимости от уровня вероятности Р(t) по таблице интегральной функции Лапласа .

    Формулы расчета численности выборки при собственно-случайном способе отбора

    Способ отбора Формулы определения численности выборки
    для средней для доли
    Повторный
    Бесповторный
    Найти численность выборки можно, использовав калькулятор.

    Метод доверительных интервалов

    Алгоритм нахождения доверительного интервала включает следующие шаги:
    1. задается доверительная вероятность γ (надежность).
    2. по выборке определяется оценка параметра a .
    3. из соотношения P(α 1 рассчитывается доверительный интервал (a - ε ; a + ε).

    Пример №1 . При проверке годности партии таблеток (250 шт.) оказалось, что средний вес таблетки 0,3 г, а СКО веса 0,01 г. Найти доверительный интервал, в который с вероятностью 90% попадает норма веса таблетки.
    Решение .

    Пример . По результатам выборочного наблюдения (выборка В приложение) вычислите несмещенные оценки среднего значения, дисперсии и среднего квадратического отклонения генеральной совокупности.
    Скачать решение

    Пример . Найдите доверительные интервалы для оценки среднего значения и среднего квадратического отклонения генеральных совокупностей при доверительной вероятности y, если из генеральных совокупностей сделана выборка В и y.
    Скачать решение

    Пример .

    1. Используя результаты расчетов, выполненных в задании № 2 и полагая, что эти данные получены при помощи собственно-случайного 10-ти процентного бесповторного отбора, определить:
    а) пределы, за которые с доверительной вероятностью 0,954 не выйдет среднее значение признака, рассчитанное по генеральной совокупности;
    б) как нужно изменить объем выборки, чтобы снизить предельную ошибку средней величины на 50%.
    2. Используя результаты расчетов, выполненных в задании № 2 и полагая, что эти данные получены при помощи повторного отбора, определить:
    а) пределы, за которые в генеральной совокупности не выйдет значение доли предприятий, у которых индивидуальные значения признака превышают моду с доверительной вероятностью 0,954;
    б) как изменить объем выборки, чтобы снизить предельную ошибку доли на 20 %.
    Методические указания

    Задание . Поточная линия по производству однотипных деталей подвергалась реконструкции Заданы две выборки отображающие процент брака в партиях деталей выпускаемых на данной линии до и после реконструкции Можно ли достоверно утверждать, что после реконструкции процент брака в партиях деталей снизился?

    Пример . Ниже приведены данные по затратам на бурение (у.е.) для 49 скважин Западно-Сибирской нефтяной базы России:

    129 142 132 61 96 96 142 17 135 32
    77 58 37 132 79 15 145 64 83 120
    11 54 48 100 43 25 67 25 140 130
    48 124 29 107 135 101 93 147 112 121
    89 97 60 84 46 139 43 145 29
    В целях оценки затрат на бурение новой скважины:
    1. провести выборку собственно случайным способом объемом n=5;
    2. определить интервальные значения среднего генеральной совокупности (X) по рассчитанным выборочным показателям (X, s 2) с помощью функции t-распределения Стьюдента при уровне значимости α=0.05;
    3. определить точечное значение среднего генеральной совокупности (X) по исходным данным;
    4. оценить правильность интервальных расчетов, сравнивая точечное значение (X) с интервальным значением, рассчитанным по выборке;
    Решение проводим с помощью этого калькулятора :

    1. Выбираем 5 значений из таблицы. Пусть это будет 3 столбец: 132, 37, 48, 29, 60.
    В разделе «Вид статистического ряда» выбираем Дискретный ряд. В поле Количество строк указываем 5.

    2. Вводим исходные данные.

    В поле Количество групп выбираем пункт «не делать группировку ».

    Поле «Доверительный интервал генерального среднего, дисперсия и среднеквадратическое отклонения » указываем значение γ = 0.95 (что соответствует α=0.05).

    В поле « Выборка » указываем значение 10 (поскольку из 49 значений выбрали 5, что соответствует 10,2% (5/49x100%)).

    В разделе «Выводит в отчет» отмечаем первый пункт «Доверительный интервал для генерального среднего» .

    3. Полученное решение сохраняется в формате Word (скачать).
    Перед расчетами создается предварительная таблица, в которой подсчитывается количество повторений значений Х.

    x (x - x ср) 2
    29 1036.84
    37 585.64
    48 174.24
    60 1.44
    132 5012.64
    306 6810.8
    В данном случае все значения X встречаются ровно один раз. Интервальные значения среднего генеральной совокупности рассчитываются в разделе «Интервальное оценивание центра генеральной совокупности» .
    Примечание : в данном случае в расчетах используется Оценка среднеквадратического отклонения.

    Задание №2 : В целях изучения затрат времени на изготовление одной детали рабочими завода проведена 10% -ная случайная бесповторная выборка, в результате которой получено распределение деталей по затратам времени, представленное в прил. Б.
    На основании этих данных вычислите:
    а) средние затраты времени на изготовление одной детали;
    б) средний квадрат отклонений (дисперсию) и среднее квадратическое отклонение;
    в) коэффициент вариации;
    г) с вероятностью 0,954 предельную ошибку выборочной средней и возможные границы, в которых ожидаются средние затраты времени на изготовление одной детали на заводе;
    д) с вероятностью 0,954 предельную ошибку выборочной доли и границы удельного веса числа деталей с минимальными затратами времени на их изготовление. Перед тем как производить расчеты, необходимо записать условия задачи и заполнить табл. 2.1

    Решение .
    Для получения решения указываем следующие параметры:

    • Вид статистического ряда: Задан дискретный ряд;
    • Количество групп: не делать группировку;
    • Для построения доверительного интервала генерального среднего, дисперсии и среднеквадратического отклонения: y= 0.954 ;
    • Для построения доверительного интервала генеральной доли: y= 0.954 ;
    • Выборка: 10 ;
    • Выводить в отчет: Доверительный интервал для генерального среднего, Доверительный интервал для генеральной доли;

    Задание №3 : Используя результаты расчетов, выполненных в задании №2 и полагая, что эти данные получены при помощи повторного отбора, определить:

    б) как изменить объем выборки, чтобы снизить предельную ошибку доли на 20% .

    Решение .
    Используя результаты расчетов, выполненных в задании № 2 и полагая, что эти данные получены при помощи повторного отбора, определить:
    а) пределы, за которые в генеральной совокупности не выйдет значение доли предприятий, у которых индивидуальные значения признака превышают моду с доверительной вероятностью 0.954 ;
    б) как изменить объем выборки, чтобы снизить предельную ошибку доли на 20%.

    Задание №4 : Из партии электроламп взята 20% -ная случайная бесповторная выборка для определения среднего веса спирали. Результаты выборки следующие. Вес, мг:38-40;40-42;42-44;44-46. Число спиралей:15;30;45;10. Определить с вероятностью 0.95 доверительные пределы, в которых лежит средний вес спирали, для всей партии электроламп.

    Решение .
    Вводим следующие параметры:

    • Вид статистический ряда: Задан интервальный ряд;
    • Для построения доверительного интервала генерального среднего, дисперсии и среднеквадратического отклонения: y = 0.95 ;
    • Выборка: 20 ;
    • Выводить в отчет: Доверительный интервал для генерального среднего.

    Задание №5 : На заводе электроламп из партии продукции в количестве 16000 шт. ламп взято на выборку 1600 шт. (случайный, бесповторный отбор), из которых 40 шт. оказались бракованными. Определить с вероятностью 0.997 пределы, в которых будет находиться процент брака для всей партии продукции.

    Решение .
    Здесь N = 16000 , n = 1600 , w = d / n = 40/1600 = 0.025.