Количественный анализ моделей. Количественный и качественный анализ результатов эмпирического исследования в психологии Количественный анализ модели характеризующей

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Задачи, функции и структура филиала университета. Оценка информационных потоков и UML-моделирование. Анализ структуры информационной системы и системы навигации. Проектирование базы данных, физическая реализация и тестирование информационной системы.

    дипломная работа , добавлен 21.01.2012

    Проектирование модели информационной системы "Гостиница" в стандарте IDEF0. Разработка диаграммы потоков данных (Data Flow Diagramming), предназначенной для описания документооборота и обработки информации. Создание диаграммы декомпозиции в нотации IDEF3.

    курсовая работа , добавлен 14.12.2012

    Анализ структуры и управления предприятием. Функции, виды деятельности, организационная и информационная модели предприятия, оценка уровня автоматизации. Перспективы развития автоматизированных систем обработки информации и управления на предприятии.

    отчет по практике , добавлен 10.09.2012

    Создание автоматизированной системы учета заказов и их выполнения в строительной фирме по ремонту квартир. Общие требования к информационной системе. Проектирование структуры базы данных. Построение ER-диаграммы. Реализация информационной системы.

    курсовая работа , добавлен 24.03.2014

    Разработка концептуальной модели системы обработки информации для узла коммутации сообщений. Построение структурной и функциональной блок-схем системы. Программирование модели на языке GPSS/PC. Анализ экономической эффективности результатов моделирования.

    курсовая работа , добавлен 04.03.2015

    Разработка программного обеспечения для ввода, хранения, редактирования и получения информации по материалам, клиентам, заказам, учету затрат и доходов строительной фирмы. Изучение предметной области; построение диаграммы потоков данных, структуры базы.

    курсовая работа , добавлен 21.09.2015

    Описание особенностей функционирования магазина. Проектирование системы: инфологическое моделирование и построение диаграммы потоков данных. Моделирование и программная реализация информационной системы. Проектирование пользовательского интерфейса.

    курсовая работа , добавлен 18.02.2013

Этап абстрагирования при изучении тех или иных физических явлений или технических объектов состоит в выделении их наиболее существенных свойств и признаков, представлении этих свойств и признаков в такой упрощенной форме, которая необходима для последующего теоретического и экспериментального исследований . Такое упрощенное представление реального объекта или явления называют моделью .

При использовании моделей сознательно отказываются от некоторых данных и свойств, присущих реальному объекту для того, чтобы легко получить решение проблемы, если эти упрощения лишь несущественно отражаются на результатах.

В зависимости от цели исследования для одного и того же технического устройства могут быть использованы различные модели: физические, математические, имитационные.

Модель сложной системы можно представить в виде блочной структуры, то есть в виде соединения звеньев, каждое из которых выполняет определенную техническую функцию (функциональная схема ). В качестве примера можно рассмотреть обобщенную модель системы передачи, изображенную на рисунке 1.2.


Рисунок 1.2 – Обобщенная модель системы передачи информации

Здесь под передатчиком понимается устройство, преобразующее сообщение источника А в сигналы S, наиболее соответствующие характеристикам данного канала. Операции, выполняемые передатчиком, могут включать в себя формирование первичного сигнала, модуляцию, кодирование, сжатие данных и т.д. Приемник производит обработку сигналов X(t) = S(t) + x(t) на выходе канала (с учетом влияния аддитивных и мультипликативных помех x) с целью наилучшего воспроизведения (восстановления) переданного сообщения А на приемном конце. Канал (в узком смысле) – это среда, используемая для передачи сигналов от передатчика к приемнику.

Другим примером модели сложной системы служит система фазовой автоподстройки частоты (ФАПЧ), используемая для стабилизации промежуточной частоты (ПЧ) в радиоприемных устройствах (рисунок 1.3).





Рисунок 1.3 – Модель системы ФАПЧ

Система предназначена для стабилизации ПЧ f пч = f с - f г путем соответствующего изменения частоты перестраиваемого генератора (гетеродина) f г при изменении частоты сигнала f с . Частота f г в свою очередь будет изменяться с помощью управляемого элемента пропорционально выходному напряжению фазового дискриминатора, зависящему от разности фаз выходной частоты f пч и частоты эталонного генератора f 0 .

Эти модели позволяют получить качественное описание процессов, выделить особенности функционирования и работоспособности системы в целом, сформулировать задачи исследования. Но техническому специалисту этих данных, как правило, недостаточно. Необходимо точно выяснить (желательно в цифрах и графиках) насколько хорошо работает система или устройство, выявить количественные показатели оценки эффективности, сравнить предлагаемые технические решения с существующими аналогами для принятия обоснованного решения.

Для теоретического исследования, получения не только качественных но и количественных показателей и характеристик необходимо выполнить математическое описание системы, то есть составить ее математическую модель.

Математические модели могут быть представлены различными математическими средствами: графами, матрицами, дифференциальными или разностными уравнениями, передаточными функциями, графическим соединением элементарных динамических звеньев или элементов, вероятностными характеристиками и т.д.

Таким образом, первым основным вопросом, который возникает при количественном анализе и расчете электронных устройств является составление с требуемой степенью приближения математической модели, описывающей изменения состояния системы с течением времени.

Графическое изображение системы в виде соединения различных звеньев, где каждому звену ставится в соответствие математическая операция (дифференциальное уравнение, передаточная функция, комплексный коэффициент передачи), называют структурной схемой . При этом основную роль играет не физическая структура звена, а характер связи между входными и выходными переменными. Таким образом, различные системы могут быть динамически эквивалентными и после замены функциональной схемы структурной можно применить общие методы анализа систем независимо от области применения, физической реализации и принципа действия исследуемой системы.

К математической модели предъявляют противоречивые требования: с одной стороны она должна как можно полнее отражать свойства оригинала, а с другой – быть по возможности простой, чтобы не усложнять исследование. Строго говоря, каждая техническая система (или устройство) является нелинейной и нестационарной, содержащей как сосредоточенные, так и распределенные параметры. Очевидно, что точное математическое описание таких систем представляет собой большие трудности и не связано с практической необходимостью. Успех анализа системы зависит от того, насколько правильно выбрана степень идеализации или упрощения при выборе их математической модели.

Например, любое активное сопротивление (R ) может зависеть от температуры, обладать реактивными свойствами на высоких частотах. При больших токах и рабочих температурах его характеристики становятся существенно нелинейными. В то же время при нормальной температуре, на низких частотах, в режиме малого сигнала эти свойства можно не учитывать и считать сопротивление безынерционным линейным элементом.

Таким образом, в ряде случаев, при ограниченном диапазоне изменения параметров можно значительно упростить модель, пренебречь нелинейностью характеристик и нестационарностью значений параметров исследуемого устройства, что позволит, например, производить его анализ с применением хорошо разработанного математического аппарата для линейных систем с постоянными параметрами.

В качестве примера, на рисунке 1.4 показана структурная схема (графическое изображение математической модели) системы ФАПЧ. При небольшой нестабильности частоты входного сигнала можно пренебречь нелинейностью характеристик фазового дискриминатора и управляемого элемента. В этом случае математические модели функциональных элементов, обозначенных на рисунке 1.3 можно представить в виде линейных звеньев, описываемых соответствующих передаточными функциями.



Рисунок 1.4 – Структурная схема (графическое изображение математической модели) системы ФАПЧ

Проектирование электронных схем с помощью программ анализа и опти­мизации на ЭВМ, как отмечалось выше, имеет ряд преимуществ перед традиционным способом про­ектирования «вручную» с последующей доводкой на макете. Во-первых, с помощью программ анализа на ЭВМ гораздо легче наблюдать эффект варьиро­вания параметров схем, чем с помощью экспериментальных исследований. Во-вторых, имеется возможность анализировать критические режимы работы схемы без физического разрушения ее компонентов. В-третьих, программы анализа позволяют оценить работу схемы при наихудшем сочетании парамет­ров, что трудно и не всегда возможно осуществить экспериментально. В-чет­вертых, программы дают возможность провести такие измерения на модели электронной схемы, которые трудно выполнить экспериментально в лаборато­рии.

Применение ЭВМ не исключает экспериментальных исследований (и даже предполагает последующую проверку на макете), но дает в руки проектировщика мощный инструмент, который позволяет значи­тельно сократить затраты времени на проектирование и уменьшить стоимость разработки. Особенно значительный эффект дает ЭВМ при проектировании сложных устройств (например, интегральных микросхем), когда необходимо учесть большое число факторов, влияющих на работу схемы, а эксперименталь­ная переделка слишком дорога и трудоемка.

Несмотря на очевидные преимущества, применение ЭВМ породило большие трудности: необходимы разработка математических моделей компонентов электронных схем и создание библиотеки их параметров, совершенствование математических методов для анализа многообразных режимов работы различных устройств и систем, разработка вычислительных комплексов большой производительности и др. К тому же многие задачи оказались неподвластны и ЭВМ. Для большинства устройств их структура и принципиальная схема в существенно степени зависит от области применения и исходных данных на проектирование, что создает большие трудности при синтезе принципиальных схем с помощью ЭВМ. В этом случае первоначальный вариант схемы составляется инженером «вручную» с последующим моделированием и оптимизацией на ЭВМ. Наибольшие достижения в построении программ структурного синтеза и синтеза принципиальных схем имеются в области проектирования согласующих цепей, аналоговых и цифровых фильтров, устройств на базе программируемых логических матриц (ПЛМ).

При разработке математической модели сложная система разбивается на подсистемы, причем, для ряда подсистем математические модели могут быть унифицированы и сосредоточены в соответствующих библиотеках. Таким образом, при исследовании электронных устройств с использованием программ компьютерного моделирования принципиальная или структурная схема представляет собой графическое изображение компонентов, каждому из которых ставится в соответствие выбранная математическая модель.

Для исследования принципиальных схем применяются модели типовых независимых источников, транзисторов, пассивных компонентов, интегральных схем, логических элементов.

Для исследования систем, заданных структурными схемами, важно указать взаимосвязь входных и выходных переменных. В этом случае выход любого структурного компонента представляют в виде зависимого источника. Как правило, эта взаимосвязь задается либо полиномиальной функцией, либо дробно-рациональной передаточной функцией с использованием оператора Лапласа. С учетом выбранных коэффициентов функций можно получить модели таких структурных компонентов, как сумматор, вычитатель, перемножитель, интегратор, дифференциатор, фильтр, усилитель и другие.

Современные программы компьютерного моделирования содержат десятки типов библиотек различных моделей, причем в каждой библиотеке собраны десятки и сотни моделей современных транзисторов и микросхем, выпускаемых ведущими производителями. Эти библиотеки, зачастую, составляют большую часть от объема программного обеспечения. Вместе с тем, в процессе моделирования существует возможность оперативной коррекции параметров существующих моделей или создания новых.

Для проведения количественного анализа диаграмм перечислим показатели модели:

Количество блоков на диаграмме – N ;

Уровень декомпозиции диаграммы – L ;

Сбалансированность диаграммы – В ;

Число стрелок, соединяющихся с блоком, – А .

Данный набор факторов относится к каждой диаграмме модели. Далее будут перечислены рекомендации по желательным значениям факторов диаграммы.

Необходимо стремиться к тому, чтобы количество блоков на диаграммах нижних уровней было бы ниже количества блоков на родительских диаграммах, т.е. с увеличением уровня декомпозиции убывал бы коэффициент . Таким образом, убывание этого коэффициента говорит о том, что по мере декомпозиции модели функции должны упрощаться, следовательно, количество блоков должно убывать.

Диаграммы дол лены быть сбалансированы. Это означает, что в рамках одной диаграммы не должно происходить ситуации, изображенной на рис. 14: у работы 1 входящих стрелок и стрелок управления значительно больше, чем выходящих. Следует отметить, что данная рекомендация может не выполняться в моделях, описывающих производственные процессы. Например, при описании процедуры сборки в блок может входить множество стрелок, описывающих компоненты изделия, а выходить одна стрелка – готовое изделие.

Рис. 14. Пример несбалансированной диаграммы

Введем коэффициент сбалансированности диаграммы:

.

Необходимо стремиться, чтобы К b , был минимален для диаграммы.

Помимо анализа графических элементов диаграммы необходимо рассматривать наименования блоков. Для оценки имен составляется словарь элементарных (тривиальных) функций моделируемой системы. Фактически в данный словарь должны попасть функции нижнего, уровня декомпозиции диаграмм. Например, для модели БД элементарными могут являться функции «найти запись», «добавить запись в БД», в то время как функция «регистрация пользователя» требует дальнейшего описания.

После формирования словаря и составления пакета диаграмм системы необходимо рассмотреть нижний уровень модели. Если на нем обнаружатся совпадения названий блоков диаграмм и слов из словаря, то это говорит, что достаточный уровень декомпозиции достигнут. Коэффициент, количественно отражающий данный критерий, можно записать как L*C – произведение уровня модели на число совпадений имен блоков со словами из словаря. Чем ниже уровень модели (больше L), тем ценнее совпадения.

Методология DFD

В основе методологии DFD лежит построение модели анализируемой АИС – проектируемой или реально существующей. Основным средством моделирования функциональных требований проектируемой системы являются диаграммы потоков данных (DFD). В соответствии с данной методологией модель системы определяется как иерархия диаграмм потоков данных. С их помощью требования разбиваются на функциональные компоненты (процессы) и представляются в виде сети, связанной потоками данных. Главная цель таких средств – продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами.

Компонентами модели являются:

Диаграммы;

Словари данных;

Спецификации процессов.

DFD-диаграммы

Диаграммы потоков данных (DFD – Data Flow Diagrams) используются для описания документооборота и обработки информации. DFD представляет модельную систему как сеть связанных между собой работ, которые можно использовать для более наглядного отображения текущих операций документооборота в корпоративных системах обработки информации.

DFD описывает:

Функции обработки информации (работы, activities);

Документы (стрелки, arrows), объекты, сотрудников или отделы, которые участвуют в обработке информации;

Таблицы для хранения документов (хранилище данных, data store).

В BPwin для построения диаграмм потоков данных используется нотация Гейна-Сарсона (табл. 4).

Нотация Гейна – Сарсона

Таблица 4

На диаграммах функциональные требованияпредставляются с помощью процессов и хранилищ, связанных потоком данных.

Внешняя сущность – материальный предмет или физическое лицо, т.е. сущность вне контекста системы, являющуюся источником или приемником системных данных (например, заказчик, персонал, поставщики, клиенты, склад и др.). Ее имя должно содержать существительное. Предполагается, что объекты, представленные такими узлами, не должны участвовать ни в какой обработке.

Система и подсистема при построении модели сложной ИС она может быть представлена в самом общем виде на контекстной диаграмме в виде одной системы как единого целого, либо может быть декомпозирована на ряд подсистем. Номер подсистемы служит для ее идентификации. В поле имени вводится наименование системы в виде предложения с подлежащим и соответствующими определениями и дополнениями.

Процессы предназначены для продуцирования выходных потоков из входных в соответствии с действием, задаваемым именем процесса. Это имя должно содержать глагол в неопределенной форме с последующим дополнением (например, вычислить, проверить, создать, получить). Номер процесса служит для его идентификации, а также для ссылок на него внутри диаграммы. Этот номер может использоваться совместно с номером диаграммы для получения уникального индекса процесса во всей модели.

Потоки данных – механизмы, использующиеся для моделирования передачи информации из одной части системы в другую. Потоки на диаграммах изображаются именованными стрелками, ориентация которых указывает направление движения информации. Иногда информация может двигаться в одном направлении, обрабатываться и возвращаться назад в ее источник. Такая ситуация может моделироваться либо двумя различными потоками, либо одним - двунаправленным.

Понятия количественные и качественные методы в психологии

Определяя методы как пути познания, С.Л. Рубинштейн отмечал, что методология должна быть осознанной и не превращаться в форму, механически накладываемую на конкретное содержание науки. Рассмотрим вопрос, насколько осознаны пути познания в психологии и как исследователи понимают и определяют количественные и качественные методы.

В качестве основных психологических методов С.Л. Рубинштейн в «Основах общей психологии » называет наблюдение, эксперимент, приемы изучения продуктов деятельности. В данном перечне не находится места количественным методам.

В 70-е годы в отечественной психологии распространение получила вторая классификация методов психологического исследования, созданная Б.Г. Ананьевым.

Он выделяет следующие группы методов:

  1. Организационные;
  2. Эмпирические;
  3. Методы обработки данных;
  4. Интерпретационные методы.

Количественные и качественные методы были отнесены к методам обработки данных. Количественные методы он определяет как математико-статистические приемы обработки психологической информации, а качественные методы – это описание тех случаев, которые наиболее полно отражают типы и варианты психических явлений и являются исключением общих правил.

Классификацию Б.Г. Ананьева подверг критике представитель ярославской школы В.Н. Дружинин, предложив свою классификацию.

По аналогии с другими науками он выделяет три класса методов в психологии:

  1. Эмпирические;
  2. Теоретические;
  3. Интерпретационные.

Качественные и количественные методы отдельно в классификации тоже не оговариваются, но предполагается, что они помещены в раздел эмпирических методов, что отличается от классификации Б.Г. Ананьева. Существенно дополнил классификацию Б.Г. Ананьева представитель ленинградской школы психологов В.В. Никандров. Он относит количественные и качественные методы к неэмпирическим методам в соответствии с критерием «этапности психологического процесса». Автор под неэмпирическими методами понимает «научно-исследовательские приемы психологической работы вне контакта исследователя и индивида.

Помимо сохранившихся отличий в классификациях С.Л. Рубинштейна и Б.Г. Ананьева, существуют терминологические разночтения в понимании количественных и качественных методов.

Не дается точного определения этих методов в работах В.В. Никандрова. Качественные методы он определяет функционально, с точки зрения результата и называет их:

  1. Классификация;
  2. Типологизация;
  3. Систематизация;
  4. Периодизация;
  5. Психологическая казуистика.

Количественный метод он подменяет определением количественной обработки, которая направлена в основном на формальное, внешнее изучение объекта. В качестве синонимов В.В. Никандров употребляет такие выражения как количественные методы, количественная обработка, количественное исследование. К основным количественным методам автор относит методы первичной и вторичной обработки.

Таким образом, проблема терминологической неточности является достаточно актуальной и приобретает новое звучание, когда исследователи стремятся отнести количественные методы к новым научным разделам «Психометрия» и «Математическая психология».

Причины терминологических расхождений

Можно назвать целый ряд причин, в результате которых нет строгого определения количественных и качественных методов в психологии:

  • Количественные методы в рамках отечественной традиции не получили однозначно строгого определения и классификации, а это говорит о методологическом плюрализме;
  • Количественные и качественные методы в традиции ленинградской школы рассматриваются как неэмпирический этап исследования. Московская школа трактует эти методы как эмпирические и возводит их до статуса методологического подхода;
  • В терминологическом смешении понятий количественные, формальные, квантативные, математико-статистические, наблюдается конвенционализм, который сложился в психологическом обществе относительно определения этих количественных и качественных методов;
  • Заимствование из американской традиции деления всех методов на количественные и качественные методы. Количественные методы, точнее исследования, подразумевают выражение и измерение результатов в количественных показателях. Качественные методы рассматриваются как «гуманитарные» исследования;
  • Определение однозначного места и соотношение количественных и качественных методов, скорее всего, приводит к тому, что количественные методы подчиняются качественным методам;
  • Современная теория метода уходит от классификации методов только на одном основании и строгом определении процедуры метода. Методологи выделяют в теории три направления:
    1. Совершенствование традиционной эмпирической модели;
    2. Критика эмпирической количественной модели;
    3. Анализ и апробация альтернативных исследовательских моделей.
  • Разные направления развития теории метода обнаруживают тенденцию тяготения исследователей к качественным методам.

Количественные методы

Цель практической психологии заключается не в установлении закономерностей, а в понимании и описании проблем, поэтому она использует как качественные, так и количественные методы.

Количественные методы представляют собой приемы обработки цифровой информации, потому что носят математический характер. Такие количественные методы как категоризованное наблюдение, тестирование, анализ документов и даже эксперимент дают возможность получения информации для диагностики проблемы. Эффективность работы определяется на завершающем этапе. Основная часть работы – беседы, тренинги, игры, дискуссии – проводится с помощью качественных методов. Из количественных методов наибольшей популярностью пользуется тестирование.

Количественные методы имеют широкое применение в научных исследованиях и в социальных науках, например, при проверке статистических гипотез. К количественным методам прибегают для обработки результатов массовых опросов общественного мнения. Для создания тестов психологи применяют аппарат математической статистики.

Методы количественного анализа делятся на две группы:

  1. Методы статистического описания. Как правило, они направлены на получение количественных характеристик;
  2. Методы статистического вывода. Дают возможность полученные результаты корректно распространять на все явление, делать заключение общего характера.

С помощью количественных методов выявляются устойчивые тенденции и строятся их объяснения.

Недостатки количественного метода контроля связаны с его ограниченностью. Эти методы оценки знаний в сфере преподавания психологии могут быть использованы только для промежуточного контроля, проверки знаний терминологии, хрестоматийных экспериментальных исследований или теоретических концепций.

Качественные методы

Повышенный интерес и популярность, качественные методы приобретают только в последнее время, что связано с запросами практики. В прикладной психологии сфера применения качественных методов очень широка:

  • Социальная психология осуществляет гуманитарную экспертизу социальных программ – пенсионная реформа , реформа образования, здравоохранения – с помощью качественных методов;
  • Политическая психология. Качественные методы здесь необходимы для построения адекватной и эффективной избирательной кампании, формирования позитивного имиджа политиков, партий, всей системы государственного управления. Важными здесь будут не только количественные показатели рейтинга доверия, но и причины этого рейтинга, пути его изменения и др.
  • При помощи качественных методов психология средств массовой коммуникации Исследует степень доверия тем или иным печатным изданиям, конкретным журналистам, программам.

Решающую роль в развитии качественных методов в психологии, таким образом, сыграла необходимость диалога психологической науки с различными сферами практической деятельности.

Качественные методы ориентируются на анализ информации, которая в основном представлена в словесной форме, поэтому возникает необходимость эту словесную информацию сжать, т.е. получить её в более компактном виде. В этом случае выступает кодирование, как основной прием сжатия.

Кодирование предполагает выделение смысловых сегментов текста, их категоризацию и реорганизацию.

Примерами сжатия информации являются схемы, таблицы, диаграммы. Таким образом, кодирование и наглядное представление информации являются основными приемами качественного анализа.

Качественные и количественные методы представляют собой инструмент определенной работы с данными, их фиксации и последующего анализа.

Качественные методы нацелены на сбор качественных данных и их последующий качественный анализ с применением соответствующих техник и приемов извлечения смысла; количественные методы являются инструментом сбора числовых данных и их последующего количественного анализа приемами математической статистики (рис. 3.1).

Рис. 3.1.

Соответственно, качественные исследования можно определить как исследования, в которых преимущественно используются качественные методы, а количественные - как исследования, построенные на преимущественном применении количественных методов.

Кажется очевидным определять тип исследования по соответствующему типу методов. Однако не все авторы подобным образом определяют качественные и количественные исследования, и в методологической литературе можно встретить их различные трактовки. Действительно, ряд авторов (см., например: Семенова, 1998; Страусс, Корбин, 2007) характеризует качественные исследования как такие, в которых применяются неколичественные методы сбора данных, а анализ данных осуществляется при помощи различных качественных интерпретативных процедур, без привлечения подсчетов и методов математической статистики. В других пособиях, посвященных качественным исследованиям (самое известное среди них: Handbook of Qualitative Research..., 2008), наряду с исключительно качественными (феноменологическим, дискурс-аналитическим, нарративным, психоаналитическим) методами анализируется так называемая Q-методология, в которой происходит сбор числовых данных и их количественный анализ. Обычно Q-методологию противопоставляют «R-мето- дологии». В R-методологии используются объективные показатели тестов, опросников, оценочных шкал, в которых отражены конструкты, созданные самим исследователем, - именно такие объективные показатели подвергаются в R-методологии процедуре математической обработки (например, с использованием процедур факторного анализа). Q-методология, в свою очередь, направлена на получение субъективных данных. Ее основу составляет процедура Q-сортировки: исследуемым предлагается сортировать некоторый набор утверждений (как правило, полученный от них же самих в результате специальной процедуры опроса или интервью), осуществляя распределение этих утверждений вдоль заранее организованного континуума, заданного некоторой шкалой. Исследуемые сортируют утверждения в соответствии с их собственной субъективной оценкой, и в дальнейшем матрица этих субъективных оценок подвергается обработке методами многомерной статистики. Как уже было сказано, процедуры Q-методологии включены в пособия по качественным исследованиям, несмотря на то что они предполагают получение количественных данных и применение статистических методов. Авторы полагают, что Q-методология представляет собой одну из возможных альтернатив основным «объективным» психологическим исследованиям, а поскольку считается, что именно направление качественных исследований воплощает дух познавательных альтернатив, базирующуюся на количественных методах Q-методологию обсуждают в контексте качественных исследований.

Как можно видеть, трактовка качественных и количественных исследований не всегда строго привязана к используемым в исследованиях типам методов. Очень часто в качестве конститутивного признака разделения качественных и количественных исследований выступают особенности организации исследования. Проблема выделения различных типов исследований с точки зрения их организации будет рассмотрена в следующем параграфе. Во избежание путаницы здесь мы предлагаем остановиться на данном в начале параграфа методическом определении качественных и количественных исследований как построенных на преимущественном применении определенного типа методов. Качественные исследования в основном имеют дело с качественными данными и качественными же способами их анализа, количественные исследования - с количественными данными и их количественным анализом.