Особенности сварки среднеуглеродистых сталей покрытыми электродами. Сварка углеродистых и легированных сталей

Глава 5 СВАРКА НИЗКОУГЛЕРОДИСТЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ

СОСТАВ И СВОЙСТВА СТАЛЕЙ

Сталь - это железный сплав, содержащий до 2 % С. В углеродистых кон-струкционных сталях, широко используемых в машиностроении, су­достроении т.д., содержание углерода обычно оставляет 0,06 ... 0,9 %. Углерод является ос-новным легирующим элементом и определяет меха­нические свойства этой гру-ппы сталей. Повышение его содержания в стали усложняет технологию сварки и затрудняет возможности получе­ния равнопрочного сварного соединения без дефектов.

По степени раскисления сталь изготовляют кипящей, спокойной и полу-спокойной (соответствующие индексы "кп", м сп м и "пс"). Кипящую сталь, соде-ржащую не более 0,07 % Si, получают при неполном раскис­лении металла. Сталь характеризуется резко выраженной неравномерно­стью распределения серы и фосфора по толщине проката. Местная по­вышенная концентрация серы может привести к образованию кристалли­зационных трещин в шве и около-шовной зоне.

Кипящая сталь склонна к старению в околошовной зоне и переходу в хру-пкое состояние при отрицательных температурах. В спокойной ста­ли, содержа-щей не менее 0,12 % Si, распределение серы и фосфора более равномерно. Эти стали менее склонны к старению. Полуспокойная сталь занимает промежуточ-ное положение между кипящей и спокойной сталью.

Стали с содержанием до 0,25 % С относятся к низкоуглеродистым, с со-держанием 0,26 ... 0,45% к среднеуглеродистым, к высокоуглероди­стым отно-сятся, стали, содержащие 0,45 ... 0,75 % С. Они отличаются плохой сваривае-мостью и их не применяют для изготовления сварных конструкций. Темпера-турная область применения углеродистых сталей от -40 до +425 °С, низколе-гированных от -70 до +475 °С. По качествен­ному признаку низкоуглеродистые стали разделяют на две группы: обыкновенного качества и качественные.

Изготовленные из нее конструкции обычно также не подвергают последу-ющей термообработке. Эта сталь поставляется по ГОСТ 380-94 на сталь углеро-дистую обыкновенного качества, ГОСТ 5520-79 (в ред. 1990 г.) на сталь для кот-лостроения, ГОСТ 5521-86 на сталь для судостроения и т.д. (табл. 6.1).

Сталь обычного качества поставляется без термической обработки в гаряче-катаном состоянии и делится на три группы: А, Б, В.

А - поставляется по механическим свойствам, для производства сварных конструкций не применяется, имеет три категории показателей механических их свойств.

Б - поставляется по химическому составу и имеет две категории. В первой нормируется содержание С, Mn, Sі, P, S, N 2 ; во второй - дополнительно норми-руется содержание Cr, Nі и Cu. Стали этой группы имеют ограниченное приме-нение при изготовлении сварных конструкций.

В - поставляется по химическому составу и механическим свойствам. Имеет 6 категорий. Наибольшее применение ВСт. 2, ВСт. 3 всех степеней раскисления:

1 – σ в, δ, α изг; 2 – σ в, δ, σ т, α изг; 3 – дополнительно а н при t = +20 о С;

4 - σ в, δ, σ т, α изг и а н при t = - 20 о С; 5 – 6 – дополнительно после старения

6.1. Химический состав некоторых углеродистых конструкционных сталей, %

Марка стали ГОСТ С Мп Si
Ст1кп Ст1пс Ст1сп Ст2кп Ст2пс Ст2сп СтЗпс СтЗсп 380-94 0,06 ... 0,12 0,06 ... 0,12 0,06 ... 0,12 0,09 ... 0,15 0,09 ...0,15 0,09 ...0,15 0,14 ...0,22 0,14 ... 0,22 0,25 ... 0,50 0,25 ... 0,50 0,25 ... 0,50 0,25 ... 0,50 0,25 ... 0,50 0,25 ... 0,50 0,40... 0,65 0,40 ... 0,65 не более 0,05 0,05 ...0,15 0,15 ...0,30 не более 0,05 0,05 ...0,15 0,15 ...0,30 0,05 ...0,15 0,15 ...0,30
1050-88 0,07 ... 0,14 0,12 ...0,19 0,17 ...0,24 0,35 ... 0,65 0,35 ... 0,65 0,35 ... 0,65 0,17 ... 0,37 0,17 ...0,37 0,17 ... 0,37
15Г 20Г 35Г 4543-71 0,12 ...0,19 0,17 ...0,24 0,32 ... 0,40 0,70 ... 1,00 0,70 ... 1,00 0,70... 1,00 0,17 ... 0,37 0,17 ...0,37 0,17 ...0,37
12К 15К 20К 22К 5520-79 0,08 ...0,16 0,12 ... 0,20 0,16... 0,24 0,19 ...0,26 0,40... 0,70 0,35 ... 0,65 <0,65 1,00 0,17 ...0,37 0,15 ...0,30 0,15 ...0,30 0,17 ...0,40
СтЗС 5521-86 0,14 ... 0,22 0,35 ... 0,60 0,12 ... 0,35

Примечания: 1. Массовая доля хрома, никеля и меди в сталях марок Ст1, Ст2 и СтЗ различной выплавки должна быть не более 0,30 % каждого, серы не более 0,050 %, фосфора не более 0,70 %.

2. Для проката из стали марок СтЗкп, СтЗпс, СтЗсп, предназначенного для сварных конструкций, отклонение по содержанию углерода в сторону его уве­личения не допускается.

Качественная углеродная сталь - содержание Mn = 0,8 - 1,1% (ГОСТ 1050 - 74). Имеет сниженное содержание S. Применяется в основном в гаря-чекатаном виде и в небольшом объеме - после термической обработки, норма-лизации или после закалки с отпуском (для термоупрочненных сталей15Г,20Г).

Конструкционные стали с нормальным и повышенным содержанием марганца (марки 15Г и 20Г) имеют пониженное количество серы. или закал с Механические свойства этих сталей зависят от термообработки (табл.6.2и 6.3).

Примечание. Для сталей марок 10, 15, 20, 15Г и 20Г механические свойства определены на образцах из нормализованных заготовок.

ОСОБЕННОСТИ СВАРКИ НИЗКОУГЛЕРОДИСТЫХ СТАЛЕЙ

Стали обладают хорошей свариваемостью; технология сварки обеспечи-вает равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном шве;

Химический состав металла шва незначительно отличается от состава основного металла;

Незначительное снижение углерода, так как в проволоке или стержне углерода меньше чем в стали. Содержание Mn и Sі возрастает. Снижение прочности при снижении углерода компенсируется увеличением V охл и легированием Mn и Sі;

Влияние V охл на механические свойства металла шва. При изменении V охл изменяется количество и строение перлитной фазы. При повышении V охл возрастают σ в, σ т и снижаются δ и а н. V охл определяется толщиной свариваемо-го металла, конструкцией сварного соединения, режимом сварки и начальной температурой изделия. Ее влияние в наибольшей степени проявляется при сварке однослойных швов и последнего слоя многослойных швов. Металл многослойных швов, кроме последнего подвергается действию повторного термического цикла сварки и имеет мелкозернистую структуру;

- при всех способах сварки упрочняется зона перегрева основного металла. При ЭШС- крупнозернистая структура;

Для снятия остаточных напряжений в конструкции из низкоуглеродис-тых сталей выполняется высокий отпуск при 500...680 о С, а для ЭШС – норма-лизация (нагрев при 900...940 о С, охлаждение на воздухе и последующим вы-соким отпуском);

Швы стойкие против образования криталлизационных трещин из - за низкого содержания углерода;

Пластическая деформация в металле шва при сварке под действием сварочных напряжений также повышается σ т.

Низкоуглеродистые и низкоуглеродистые низколегированные стали обла-дают хорошей свариваемостью. Важное требование при сварке рассматривае-мых сталей - обеспечение равнопрочности сварного соединения с основным ме-таллом и отсут­ствие дефектов в сварном шве. Для этого механические свойства металла шва и околошовной зоны должны быть не ниже нижнего предела соот­ветствующих свойств основного металла.

При сварке низкоуглеродистых и низкоуглеродистых низколегиро­ванных сталей при применении соответствующих сварочных материалов металл шва легирован кремнием и марганцем больше, чем основной ме­талл. Поэтому его механические свойства в большинстве случаев выше, чем у основного металла. В этом случае основное требование при сварке -получение сварного шва с не-обходимыми геометрическими размерами и без дефектов.

В некоторых случаях конкретные условия работы конструкций допус­ка-ют снижение отдельных показателей механических свойств сварного со­едине-ния. Однако во всех случаях, особенно при сварке ответственных кон­струкций, швы не должны иметь трещин, непроваров, пор, подрезов.

Геометрические размеры и форма швов должны соответствовать требуе-мым. Сварное соединение должно быть стойким против перехода в хрупкое состояния. Иногда к сварному соединению предъявляют допол­нительные тре-бования (работоспособность при вибрационных и ударных нагрузках, пони-женных температурах и т.д.). Технология должна обеспе­чивать максимальную производительность и экономичность процесса сварки при требуемой надеж-ности конструкции.

Механические свойства металла шва и сварного соединения зависят от его структуры, которая определяется химическим составом, режимом сварки, предыдущей и последующей термообработкой. Химический со­став металла шва при сварке рассматриваемых сталей незначительно от­личается от состава основного металла (табл. 6.6). Это различие сводится к снижению содержания в металле шва углерода для предупреждения образования структур закалочного характера при повышенных скоростях охлаждения. Возможное снижение прочности металла шва, вызванное уменьшением содержания в нем углерода, компенсируется легированием металла через проволоку, покрытие или флюс марганцем, кремнием, а при сварке низколегированных сталей - также и за счет перехода этих элементов из основного металла.

Таким образом, химиче­ский состав металла шва зави­сит от доли участия основного и дополнительного металлов в образовании металла шва и взаимо-действий между метал­лом, шлаком и газовой фазой. Повышенные скорости ох-лаж­дения металла шва также спо­собствуют повышению его прочности (рис. 6.4), однако при этом снижаются его пла­стические свойства и ударная вязкость. Это объясняется из­менением количества и строе­ния перлитной фазы.

Рис. 6.4. Зависимость между скоростью охлаждения и механическими свойствами металла шва придуговой сварке низкоуглеродистых сталей

Критическая температура перехода металла однослойно­го шва в хрупкое состояние практически не зависит от скорости охлаждения. Скорость охлажде-ния металла шва определяется толщиной свариваемого металла, конструкци­ей сварного соединения, режимом сварки и начальной температурой из­делия.

Влияние скорости охлаждения в наибольшей степени проявляется при дуговой сварке однослойных угловых швов и последнего слоя многослой­ных угловых и стыковых швов при наложении их на холодные, предвари­тельно сва-ренные швы. Металл многослойных швов, кроме последних слоев, подвергаю-щийся действию повторного термического цикла свар­ки, имеет более благоп-риятную мелкозернистую структуру. Поэтому он обладает более низкой крити-ческой температурой перехода в хрупкое состояние. Пластическая дефор-ма-ция, возникающая в металле шва под воздействием сварочных напряжений, также повышает предел текучести металла шва.

Обеспечение равнопрочности металла шва при дуговых способах сварки низкоуглеродистьх и низколегированных нетермоупрочненных сталей обычно не вызывает затруднений. Механические свойства металла околошовной зоны зависят от конкретных условий сварки и от вида тер­мообработки стали перед сваркой.

При сварке низкоуглеродисгых горячекатаных (в состоянии постав­ки) сталей при толщине металла до 15 мм на обычных режимах, обеспе­чивающих небольшие скорости охлаждения, структуры металла шва и околошовной зоны примерно такие, как было рассмотрено выше.

Повышение скоростей охлаждения при сварке на форсирован­ных режи-мах металла повышенной толщины, однопроходных угловых швов, при отри-цательных температурах и т.д. может привести к появле­нию в металле шва и околошовной зоны закалочных структур на участ­ках перегрева и полной и не-полной рекристаллизации.

Как видно из данных табл. 6.7 и рис. 6.5 скорость охлаждения для низко-углеродистых сталей оказывает большое влияние на их механиче­ские свойства. При повышении содержания марганца это влияние усили­вается. Поэтому даже при сварке горячекатаной низкоуглеродистой стали марки Ст3кп при указан-ных выше условиях не исключена возможность получения в сварном соедине-нии закалочных структур. Если сталь перед сваркой прошла термическое уп-рочнение - закалку, то в зоне термиче­ского влияния шва на участках рекрис-таллизации и старения будет на­блюдаться отпуск металла, т.е. снижение его прочностных свойств. Уро­вень изменения этих свойств зависит от погонной энергии, типа сварного соединения и условий сварки.

При сварке низколегированных сталей изменение свойств металла шва и околошовной зоны проявляется более значительно. Сварка горячекатаной стали способствует появлению закалочных структур на участках перефева и нормализации (см. рис. 6.2). Уровень изменения механических свойств металла больше, чем при сварке низкоуглеродистых сталей. Термообработка низколегированных сталей, наиболее часто - закалка (термоупрочнение) с целью повышения их прочностных показателей при сохранении высокой пластичности (см. табл. 6.7) усложняет технологию сварки. На участках рек-ристаллизации и старения происходит разупрочне­ние стали под действием высокого отпуска с образованием структур пре­имущественно троостита или сорбита отпуска.

В процессе изготовления конструкций из низкоуглеродистых и низ­ко-легированных сталей на заготовительных операциях и при сварке в зонах, уда-ленных от высокотемпературной области, возникает холодная пластическая деформация. Попадая при наложении последующих швов под сварочный наг-рев до температур около 300 °С, эти зоны становятся участками деформацион-ного старения, приводящего к снижению пласти­ческих и повышению прочнос-тных свойств металла и возможному воз­никновению трещин, особенно при низких температурах или в концен­траторах напряжений.

Высокий отпуск при температурах 600 ... 650°С в этих случаях слу­жит эффективным средством восстановления свойств металла (рис. 6.7).


Рис. 6.7. Свойства стали СтЗкп в зависимости от термообработки и деформационного старения:

1 - исходное горячекатаное состояние; 2 - после 10 %-ной деформации растяжением при 250 °С; 3 - то же и последующего отпуска при 650 °С

Высокий отпуск применяют и для снятия сварочных напряжений. Нор­мализации подвергают сварные конструкции для улучшения структуры отдель-ных участков сварного соединения и выравнивания их свойств. Термообработ-ка, кроме закалки сварных соединений, в которых шов и око­лошовная зона ох-лаждались с повышенными скоростями, приведшими к образованию на неко-торых участках неравновесных структур закалочного характера (угловые одно-слойные швы, последние проходы, выполненные на полностью остывших предыдущих), приводит к снижению прочност­ных и повышению пластических свойств металла в этих участках (табл. 6.7 и 6.9).


Примечание. Состав металла шва: при сварке под флюсом 0,12 % С; 0,75 % Мп; 0,22 % Si; при электрошлаковой сварке 0,14 % С; 0,80 % Мп; 0,07 % Si.

При сварке короткими участками по горячим предварительно нало­жен-ным швам замедленная скорость охлаждения металла шва и около­шовной зоны способствует получению равновесных структур. Влияние термообработки в этом случае сказывается незначительно. При электро­шлаковой сварке, когда скорость остывания металла шва околошовной зоны сопоставима со скорос-тями охлаждения при термообработке, по­следующая термообработка мало из-меняет механические свойства ме­талла рассматриваемых зон. Однако норма-лизация приводит к резкому возрастанию ударной вязкости.

Швы, сваренные на низкоуглеродистых сталях всеми способами сварки, обладают удовлетворительной стойкостью против образования кристаллиза-ционных трещин. Это обусловлено низким содержанием в них углерода. Од-нако для низкоуглеродистых сталей, содержащих угле­род по верхнему пределу (свыше 0,20 %), при сварке угловых швов и первого корневого шва в многос-лойных швах, особенно с повышенным зазором, возможно образование крис-таллизационных трещин, что связа­но в основном с неблагоприятной формой провара (узкая глубокая форма провара с коэффициентом формы 0,8 ... 1,2). Легирующие добавки в низ­колегированных сталях могут повышать вероят-ность образования кри­сталлизационных трещин.

Низкоуглеродистые и низколегированные стали хорошо сваривают­ся практически всеми способами сварки плавлением.

Сварку среднеуглеродистых сталей следует выполнять так, чтобы снизить содержание углерода в металле шва, что достигается применени­ем присадоч-ной проволоки с низким содержанием углерода и уменьше­нием доли основного металла в шве. Следует также обеспечить получе­ние шва с большим коэффи-циентом формы, выбирать режимы сварки и число слоев с учетом получения минимальной зоны термического влия­ния, предупреждения роста зерна в зоне перегрева и по возможности от­сутствия хрупких закалочных структур. Послед-нее может быть обеспече­но предварительным подогревом до 250 ... 300 °С. Многослойная сварка, а также двухдуговая сварка в раздельные сварочные ван-ны (рис. 3.27, б) спо­собствуют получению качественных сварных соединений.

Высокоуглеродистые стали обладают плохой свариваемостью и их прак-тически не применяют для изготовления сварных конструкций. Не­обходимость сварки подобных сталей возникает при ремонтных работах. Она выполняется при предварительном подогреве до температур 450 ... 600 °С покрытыми элек-тродами или полуавтоматами.


Конструкции из среднеуглеродистой стали могут быть хорошо сварены при непременном соблюдении правил сварки, а также следующих дополнительных указаний. В стыковых, угловых и тавровых соединениях следует при сборке соединяемых элементов сохранять между кромками зазоры, предусмотренные ГОСТ, чтобы сварочная поперечная усадка происходила более свободно и не вызывала кристаллизационных трещин. Кроме того, начиная с толщины стали 5 мм и более, в стыковых соединениях делают разделку кромок, и сварку ведут в несколько слоев. Сварочный ток понижают.

Сварка высокоуглеродистой стали

Сварка высокоуглеродистых сталей марок ВСт6, 45, 50 и 60 и литейных углеродистых сталей с содержанием углерода до 0,7 % еще более затруднительна. Эти стали применяют главным образом в литых деталях и при изготовлении инструмента. Сварка их возможна только с предварительным и сопутствующим подогревом до температуры 350-400 °С и последующей термообработкой в нагревательных печах. При сварке должны соблюдаться правила, предусмотренные для среднеуглеродистой стали, этот процесс мы рассмотрим ниже.

Технологии сварки высокоуглеродистых сталей

Хорошие результаты достигаются при сварке узкими валиками и небольшими участками с охлаждением каждого слоя. После окончания сварки обязательна термическая обработка.

Сварка среднеуглеродистой стали

Сварка среднеуглеродистой стали марок ВСт5, 30, 35 и 40, содержащей углерода 0,28-0,37 % и 0,27- 0,45%, более затруднена, так как с увеличением содержания углерода ухудшается свариваемость стали.

Применяемую для арматуры железобетона среднеуглеродистую сталь марок ВСт5пс и ВСт5сп сваривают ванным способом и обычными протяженными швами при соединении с накладками (рис. 16.1). Для сварки концы соединяемых стержней должны быть подготовлены: для ванной сварки в нижнем положении- обрезаны резаком или пилой, а при вертикальной сварке - разделаны. Кроме того, они должны быть зачищены в местах соединения на длину, превышающую на 10-15 мм сварной шов или стык. Сварка производится электродами Э42А, Э46А и Э50А для протяженных валиковых швов. При температуре воздуха до минус 30 °С необходимо увеличивать силу

Рис. 16.1. Сварка стыков арматуры железобетона: а - ванная; 1 - горизонтальных; 2 - вертикальных; б - шовная

сварочного тока на 1 % при понижении температуры от 0°С на каждые 3°С. Кроме того, следует применять предварительный подогрев соединяемых стержней до 200-250 °С на длину 90-150 мм от стыка и снижать скорость охлаждения после сварки, обматывая стыки асбестом, а в случае ванной сварки не снимать формующих элементов до охлаждения стыка до 100 °С и ниже.

При более низкой температуре окружающего воздуха (от -30 до - 50 °С) следует руководствоваться специально разработанной технологией сварки, предусматривающей предварительный и сопутствующий подогрев и последующую термическую обработку стыков арматуры либо сварку в специальных тепляках.

Сварку других конструкций из среднеуглеродистой стали марок ВСт5, 30, 35 и 40 следует вести с соблюдением тех же дополнительных указаний. Стыки рельсовых путей обычно сваривают ванной сваркой с предварительным подогревом и последующим медленным охлаждением аналогично стыкам арматуры. При сварке других конструкций из этих сталей следует применять предварительный и сопутствующий подогрев, а также последующую термическую обработку.

Электроды

Сварку ведут электродами диаметром не более 4-5 мм постоянным током обратной полярности, что обеспечивает меньшее расплавление кромок основного металла и, следовательно, меньшую его долю и меньшее содержание С в металле шва. Для сварки применяют электроды Э42А, Э46А или Э50А. В стальных стержнях электродов содержится немного углерода, поэтому при их расплавлении и перемешивании с небольшим количеством среднеуглеродистого основного металла в шве углерода будет не более 0,1-0,15 %.

При этом металл шва легируется Мn и Si за счет расплавляемого покрытия и таким образом оказывается равнопрочным основному металлу. Сварку металла толщиной более 15 мм ведут «горкой», «каскадом» или «блоками» для более медленного охлаждения. Применяют предварительный и сопутствующий подогрев (периодический подогрев перед сваркой очередного «каскада» или «блока» до температуры 120-250°С). Конструкции, изготовленные из стали марок ВСт4пс, ВСт4сп и из стали 25 толщиной не более 15 мм и не имеющие жестких узлов, обычно сваривают без подогрева. В других случаях требуются предварительный и сопутствующий подогрев и даже последующая термическая обработка. Дугу зажигают только в месте будущего шва. Не должно быть незаваренных кратеров и резких переходов от основного к наплавленному металлу, подрезов и пересечений швов. Выводить кратеры на основной металл запрещается. На последний слой многослойного шва накладывают отжигающий валик.

Самый потребляемый в мире металл – сталь, фактически сталь – это не металл, а сплав железа с углеродом. На данный момент общее количество производимой стали в мире превышает полтора миллиарда тонн в год. Стали подразделяются на углеродистые и легированные, легированные отличаются тем, что в процессе производства в сталь добавляют различные элементы (например никель, для увеличения сопротивления коррозии, марганец для увеличения прочностных характеристик и так далее), придающие ей особые свойства. Углеродистые стали используются чаще всего для сваривания, существуют низкоуглеродистые стали, содержащие менее 0,3 % углерода, они хорошо поддаются любой сварке, среднеуглеродистые с содержанием от 0,3 до 0,6 % поддаются сварочному процессу хуже, зато прочнее, но менее пластичнее, высокоуглеродистые стали самые прочные, но имеют небольшое относительное удлинение, поддаются сварочному процессу хуже всех. Отличаются они по содержанию углерода, а, следовательно, по химическим и физическим свойствам.

Низкоуглеродистая сталь относится к большой группе конструкционных. Содержание углерода в ней не больше 0,3 %, из-за такого невысокого процентного содержания она имеет следующие свойства:

  • Высокая пластичность и упругость;
  • Хорошо поддается сварочному процессу;
  • Высокая ударная вязкость.

Данная марка нашла широкое применение в строительстве благодаря тому, что она очень легко сваривается, так как в ее структуре очень мало углерода, который плохо влияет на сварочный процесс, так как в металлическом шве могут образовываться хрупкие структуры и пористости, которые затем приводят к поломке. Также из-за высокой мягкости из нее изготавливаются детали методом холодной штамповки.

Сварка углеродистых сталей

Сваривать возможно абсолютно все марки стали. Однако для сварки каждого вида металла существует своя технология. Технология сварки углеродистых сталей должна соответствовать требованиям, которые включают в себя:

  • Равномерное распределение прочности шва по всей длине;
  • Отсутствие сварных дефектов, швы не должны иметь различных трещин, пор, нарезов и так далее;
  • Размеры и геометрическая форма шва должны быть выполнены в соответствие с нормами, прописанными в соответствующем ГОСТе 5264-80;
  • Вибрационная устойчивость свариваемой конструкции;
  • Использование электродов с пониженным содержанием водорода и углерода, которые могут оказать негативное влияние на качество шва;
  • Конструкция должна быть прочной и жесткой.

Таким образом, технология должна быть максимально эффективной, то есть давать наивысшую производительность процесса при обеспечении высокой прочности и надежности.

Механические свойства металла шва и сварного соединения полностью зависят от микроструктуры, которая представляет собой химический состав, а также определяется режимом сварки и термообработкой, которая осуществляется как до, так и после сваривания.

Низкоуглеродсиая сталь: технология сварки

Как уже было сказано выше, низкоуглеродистые стали поддаются сварочному процессу лучше всего. Они могут свариваться с помощью газовой сварки в ацетиленкислородном пламени без дополнительных флюсов. В качестве присадки используются металлические проволоки. Негативно повлиять на сварочный процесс может водород, который способен образовывать поры. Для предотвращения данной проблему рекомендуют проводить сварочный процесс с присадочным металлом, содержащим небольшое количество углерода.

После осуществления процесса сваривания конструкцию необходимо термически обработать, чтобы улучшить механические свойства – пластичность и прочность будут одинаковы. Термическую обработку сварных конструкций проводят операцией нормализации, которая заключается в нагреве изделия до определенной температуры, примерно 400 градусов, выдержке и дальнейшему охлаждению на воздухе. В результате структура уравнивается, углерод в виде цементита в металле диффундирует внутрь зерен, благодаря чему структура становится равномерной.

Газовую сварку проводят в присутствии аргона, который создает нейтральную среду. Конструкции, которые выполняются сваркой в среде аргона имеют более ответственное назначение.

Сварка низкоуглеродистых сталей может проводиться вручную, дуговая сварка такого материала требует правильного выбора электрода. При выборе электрода необходимо учитывать следующие факторы, благодаря которым обеспечиться равномерная структура шва без дефектов. Перед тем как осуществлять процесс сварки необходимо прокалить электроды, чтобы подготовить их к дальнейшей работе, убрать водород. Сварка низкоуглеродистых железных сплавов должна быть точной т быстрой, перед началом процесса нужно подготовить металлические детали.

Сварка среднеуглеродистых

Процедура сварки стальных деталей со средним содержанием углерода, от 0,3 % до 0,55 % сложнее по сравнению с низкоуглеродистым, так как большее количество углерода может негативно повлиять на сварочный шов. Углерод уменьшает предел хладноломкости – то есть разрушении при низких температурах, увеличивает прочность и твердость, однако снижает пластичность шва.

Для сварки применяются электроды с пониженным содержанием углерода, которые обеспечивают прочное соединение.

Сварка высокоуглеродистых сталей

Стали, имеющие высокий процент содержания углерода, от 0,6 % до 0,85 %, очень плохо поддаются сварочному процессу. Газовая сварка применяться в данном случае не может, так как в процессе углерод выгорает в больших количествах и образуются закалочные структуры, которые ухудшают качество шва. Лучше всего в данном случае применять дуговую сварку.

Требования

Во время сварки углеродистых сталей для достижения максимальных параметров необходимо соблюдение следующих требований:

  • Сварные электроды и проволока должны иметь низкий процент углерода, чтобы избежать появление ненужных дефектов;
  • Необходимо следить, чтобы углерод из металла под действием высокой температуры не переходил в сварной шов, для этого применяется проволока для сварки сталей со средним содержанием углерода и выше, например Forte E71T-1, Барс-71. Данные типы отлично подойдут для сварки сталей с содержанием углерода выше 0,3 %;
  • При проведении сварочного процесса следует добавлять флюсы, которые способствуют образованию тугоплавких образований;
  • Снижать химическую неоднородность шва путем последующей термической обработки;
  • Снижать содержание водорода путем прокалки электродов, использованием электродов с низким содержанием водорода и прочее.

Особенности

Также следует отметить следующие особенности проведения сварки углеродистых сталей:

  • Перед проведением данной операции нужно тщательно очищать свариваемый материал от ржавчины, механических неровностей, грязи, окалины. Эти загрязнения способствуют образованию трещин в сварочном шве;
  • Охлаждать сварочные конструкции из углеродистых сталей нужно медленно, на воздухе, чтобы структура нормализовалась;
  • При проведении сварного процесса для ответственных деталей нужен предварительный подогрев, примерно до 400 градусов, с помощью подогрева обеспечится требуемая прочность шва, также в данном случае сварку можно осуществлять в несколько подходов.

Таким образом, процесс сваривания углеродистых сталей зависит, главным образом, от содержания в них углерода. Поэтому необходимо учитывать, какое содержание и выбирать правильную технологическую схему, чтобы получить высококачественное прочное изделие, которое сможет прослужить долгий срок.

Сталь считается прочным материалом, который используется в разных сферах. Из него изготавливают важные конструкции - ограждения, элементы для обшивки зданий, различное оборудование, трубы и другие изделия. Прочность основы обеспечивает содержание в ее составе различных добавок.

Составляющие компоненты оказывают влияние не только на прочность металла, но и на способность к свариванию. Сварка стали может зависеть от разных показателей - от свойств, прочности, дополнительных компонентов. Именно поэтому некоторые виды металла свариваются быстро и легко, а другие наоборот требуют особого подхода.

Влияние легированных примесей на сваривание стали

Сталь для сварочных конструкций может применять различная, но стоит учитывать, что ее свариваемость зависит в первую очередь от наличия в ее составе легированных примесей. Именно химический состав оказывает основное влияние на данный процесс.

Ниже в таблице приведены основные легирующие примеси, которые влияют на степень свариваемости различных видов стали.

Легирующая примесь Описание
Углерод (С) Эта самая важная примесь, от которой зависит прочность, эластичность, закаливаемость и другие важные качества металла. Если в состав входит 0,25 % углерода, то это не будет снижать показатели свариваемости. Если же его содержание будет выше данного показателя, то это вызовет появление закалочных структур в металле зоны термического влияния и к появлению трещин.
Сера (S) и фосфор (Р) Данные компоненты относятся к вредным добавкам. При высоком уровне в составе стали серы происходит появление красных трещин - красноломкость, а при наличии высокого уровня фосфора - хладноломкость. Поэтому низкоуглеродистые стали содержат S и P до 0,4-0,5 %.
Кремний (Si) Это раскислитель. Его уровень должен быть около 0,3 %, данный показатель не снижает свойства свертываемости. Если кремний будет составлять 0,8-1 %, то могут образоваться тугоплавкие оксиды, которые окажут негативное влияние на свариваемость металла.
Марганец (Mn) При содержании данного элемента до 1 % сваривание не ухудшается. Если уровень марганца будет составлять от 1,8 до 2,5 %, то могут образовываться закалочные структуры и трещины в металле.
Хром (Cr) В составе низкоуглеродистых сталей хром содержится в качестве примеси до 0,3 %. В составе низкоуглеродистых сталей - 0,7-3,5 %. В легированных сталях - 12-18 %. А в высоколегированных - 35 %. Во время сварки хром вызывает образование карбидов, которые ухудшают степень стойкости металла к воздействию коррозии. Также данное вещество вызывает образование тугоплавких оксидов, которые ухудшают процесс сварки.
Никель Компонент имеется в составе в качестве примеси. Его нормальное содержание должно быть 0,3 %. В составе низколегированных сталях возможно повышение до 5 %, а в высоколегированных - до 35 %. Никель повышает уровень прочности и пластичности металла.
Ванадий (V) В составе легированных сталей уровень компонента достигает 0,2-0,8 %. Он вызывает увеличение вязкости и пластичности стали, улучшает ее структуру, повышает степень ее прокаливаемости.
Молибден (Mo) В сталях его содержание не должно превышать 0,8 %. Если уровень компонента в норме, то он будет положительно влиять на прочностные характеристики металла. Но при сварке происходит выгорание этого компонента, что приводит к появлению трещин в наплавленном металле.
Титан и ниобии (Ti и Nb) В составе сталей устойчивых к коррозийному поражению, а также в металлах с высокой жаропрочностью содержание данных элементов может составлять 1 %. Они повышают стойкость к коррозийному поражению, но при этом ниобий в сталях с типом 18-8 вызывает образование трещин.
Медь (Сu) В сталях ее уровень составляет 0,3 %, в низколегированных - от 0,15 до 0,5 %, а в высоколегированных - от 0,8 до 1 %. Повышает устойчивость к коррозийному поражению, но при этом не ухудшает свариваемость.

Факторы, определяющие свертываемость стали

Сварка углеродистых сталей зависит от содержания примесей, и от других свойств. Обычно оценивание сваривания проводится по показателям содержания основного вещества - углеродного эквивалента Сэкв. Это условный коэффициент, который позволят учитывать степень воздействия содержания карбона и главные легирующие компоненты на характеристики шва.


Степень сваривания стали для изготовления сварных конструкций может зависеть от следующих факторов:

  • показатель содержания углерода;
  • присутствие вредных примесей;
  • степень легирования;
  • вид микроструктуры;
  • условия внешней среды;
  • уровень толщины металлической основы.

Классификация сталей по свариваемости

Сварка стали 45, 40, 20 и других марок в зависимости от важных качеств металлической основы может иметь различные характеристики.


В зависимости от степени свариваемости сталь разделяют на несколько групп:

  • хорошая свариваемость, при этом показатель углеродного эквивалента Сэкв. должен быть не меньше 0,25 %, допускается больше. Она не зависит от погодных условий, от размера толщины изделий, наличия подготовительных работ;
  • удовлетворительный показатель свариваемости - показатель Сэкв должен быть больше 0,25 %, но не выше 0,35 %. При этом имеются ограничительные нормы к условиям окружающей среды и к размерам диаметра свариваемого изделия. Сварка стали 20 должна проводиться при температуре воздуха до -5 в безветренную погоду, а размер диаметра не должен превышать 20 мм;
  • ограниченная. Показатель Сэкв. должен составлять от 0,35 % до,45 %, но главное не больше. Чтобы получить шов высокого качество требуется проводить предварительный нагрев. За счет этого получается добиться плавные аустенитные преобразования, а также формирование устойчивых структур;
  • плохая свариваемость, при которой показатель Сэкв. составляет больше 0,45 %. Для того чтобы получить качественное и механические устойчивое сварное соединение требуется предварительная температурная подготовка кромок металлической основы. Также после сваривания конструкцию следует термически обрабатывать. Для получения требуемой микроструктуры во время сварки стали 40 должны выполняться дополнительные подогревы и охлаждения.

Особенности сварки низкоуглеродистых сталей

Металлы низкоуглеродистого типа имеют в своем составе 0,25 % углерода. Этот показатель обеспечивает положительные особенности основы:

  • хорошая упругость;
  • высокие свойства пластичности;
  • значительная ударная вязкость;
  • основа идеально подходит для сваривания.

Применяют низкоуглеродистую сталь для сварных конструкций. Также используют при изготовлении изделий методом холодного штампования.

Как сваривается низкоуглеродистая сталь

Технология сварки низкоуглеродистых сталей проводится с помощью ручного дугового сваривания с использованием электродов с обмазыванием. Обязательно запомните несколько нюансов:

  • в первую очередь требуется выбрать марку электродов. За счет этого обеспечивается равномерная структура наплавленного металла;
  • сваривание должно выполняться в быстром и точном режиме;
  • перед тем как начинать рабочий процесс требуется заранее подготовить детали, которые нужно будет соединять.

Технология сварки углеродистых сталей может производиться газовым свариванием. К важным особенностям относят:

  • при этом процесс проводится без использования дополнительных флюсов;
  • для присадочной основы стоит использовать металлическую проволоку с низким уровнем углерода;
  • при правильном выполнении сваривании предотвращается образование пор;
  • изделия важного значения нужно сваривать аргоном.

Как сваривание будет выполнено, готовое изделие обязательно подвергают термической обработке при помощи метода нормализации. Во время данного процесса изделие нагревается до 4000С, затем охлаждается и выдерживается на открытом воздухе. Данная процедура делает структуру изделия равномерной.

Главные особенности

Сварка стали 30 с низкоуглеродистой основой обладает несколькими важными особенностями, на которые стоит обратить внимание:

  • качественное сваривание конструкций из данного материала обеспечивает равнопрочность сварного соединения с основным металлом. Также оно защищает от образования дефектов;
  • металлическая основа соединения имеет в составе низкое содержание углерода, но при этом показатели таких компонентов, как кремний и марганец повышены;
  • во время ручной дуговой сварке околошовная зона может подвергаться перегреванию. Это способствует небольшому упрочнению шва;
  • шов, который выполняется при помощи многослойной сварки, имеет повышенную хрупкость;
  • в связи с тем, что в швах имеется низкий уровень углерода, они обладают повышенной стойкостью к воздействию межкристаллическому коррозийному поражению.

Разновидности сварки для низкоуглеродистой стали

Сварка низкоуглеродистых сталей может производиться при помощи нескольких методов. При этом каждый из них имеет важные особенности, которые обязательно нужно учитывать во время сваривания.

Вид Характеристика
Ручное дуговое сваривание электродами с покрытием Чтобы точно выбрать расходный материал для сваривания этим методом, требуется учитывать несколько важных условий - готовый сварной шов должен быть без повреждений, равномерная прочность соединения, оптимальный химический состав металлической основы шва, стойкость соединения при ударах. Сварка стали 45 и других марок выполняется электродом. При этом могут использоваться различные марки электродов.
Газовая Процесс производится в защитной аргоновой среде. Дополнительно в качестве присадочной основы используется проволока из металлической основы.
Электрошлаковая Во время нее применяются флюсы. Электроды из проволочной и пластинчатой основы выбираются в зависимости от главного сплава.
Автоматическое и полуавтоматическое сваривание Процесс сваривания производится в защитной среде. Во время него может применяться аргон или гелий в чистом виде, но в основном углекислый газ.
Автоматическая под флюсом Сваривание выполняется с использованием электродной проволоки в диаметре от 3 до 5 мм. Сварка 45 стали (20, 30, 40 и других марок) полуавтоматом - 1,2-2 мм. Сваривание происходит за счет электрического тока с обратной полярностью.
Сваривание с применением порошковых проволок Оно считается самым подходящим. Сила тока обычно находиться в пределах от 200 до 600 А.

Сварка среднеуглеродистой стали

Металлы со средним содержанием углерода обычно применяют при производстве изделий с высокими механическими качествами. Сплавы подходят для ковки. Также их часто используют для конструкций, которые производятся при помощи холодного пластического деформирования.


Стали, которые содержат в составе углерод от 0,4 до 0,6 %, часто применяются в машиностроительной сфере. Из них можно делать колеса и оси вагонов, рельсы железных дорог.

Как выполняется

Технология сварки среднеуглеродистых сталей протекает не так просто. Все дело в некоторых сложностях:

  • у главного и наплавляемого металла отсутствует равная прочность;
  • имеется повышенный риск появления больших трещин и непластичных структур рядом с соединением;
  • низкая устойчивость к образованию коррозии.
  • сварка 30хгса стали должна проводиться электродами и проволокой с низким уровнем углерода;
  • сварочные стержни должны иметь повышенный показатель коэффициента наплавления;
  • чтобы обеспечить небольшую степень проплавления главного металла рекомендуется делать разделение кромок, установку подходящего режима сваривания, а также применять проволоку присадочного типа;
  • сварка стали 35хгса обязательно должна быть с предварительным прогреванием заготовок. Также они должны прогреваться и в процессе сваривания для обеспечения равномерной прочности сварных швов.

Виды сварки среднеуглеродистой стали

Сварка стальных труб из металла со средним содержанием углерода и других изделий является сложной процедурой. Сваривание данного материала может производиться несколькими способами. При этом каждый из них отличается как процессом работы, так и готовым результатом.

Сталь под маркой 35 хгса имеет среднее содержание углерода, ее сварка обычно производиться ручным дуговым свариванием с электродами. Но при этом они должны иметь в своем составе небольшой уровень углерода, наиболее подходящими считаются расходники следующих марок - УОНИ-13/55, УОНИ-13/65, ОЗС-2, К-5а.

Технология газовой сварки среднеуглеродистых сталей имеющих тонколистный формат производится левым способом с применением проволоки. Также обязательно применяется нормальное сварочное пламя, которое позволяет снизить расход газа в среднем до 75-100 дм3 в 1 час. В среднем показатель расхода ацетилена составляет 120-150 л/ч на 1 мм толщины свариваемого сплава.

Изделия с толстыми стенками с размером толщины от 3 мм и больше нужно сваривать правым способом газовой сварки. Этот вариант имеет высокую производительность. При этом расчет ацетилена такой же, как и при левом способе сварки - 120-150 л/ч. Общий подогрев должен доходить до 250-300 градусов, а местный до 600-650 градусов.


Сварка стали 35, 20, 40, 45 и других марок под флюсом сопровождается использованием проволоки для сварочных работ и плавленых флюсов. При сваривании оказывается небольшое воздействие тока. Это повышает содержание в наплавляемой металлической основе кремния и марганца.

Сварка высокоуглеродистой стали

Из высокоуглеродистого металла не производятся сварные изделия. Дело в том, что данный материал обладает низким уровнем пластичности, именно это свойство ограничивает использование металла.

Высокоуглеродистую сталь применяют в следующих целях:

  • во время проведения ремонтов и строительства;
  • для изготовления пружин;
  • для производства инструментов и изделий, которые используются для резки, бурения, деревообработки;
  • из металла производится проволока с высокой прочностью;
  • конструкции, которые имеют высокую износостойкость и прочность.

Как выполняется

Сварка высокоуглеродистых сталей выполняется обычно с использованием предварительного и сопутствующего прогрева наплавляемого металла до 150-4000С. Также после сваривания дополнительно для улучшения прочности проводится термообработка.

Это нужно потому, что сплавы из материала имеют высокую хрупкость, повышенную чувствительность к трещинам с горячей и холодной структурой, а также из-за химической неоднородности сварного соединения.

Технология сварки высокоуглеродистых сталей выполняется с учетом следующих рекомендаций:

  • после прогрева выполняется отжиг. Он выполняется, пока конструкция не остынет до 2000С;
  • сварка 40х, 20х, 30х не должна выполняться на сквозняках, а также при показателе температуры ниже -50С;
  • чтобы повысить свойства прочности шва нужно производить плавный переход от одного к другому свариваемому металлу;
  • чтобы получить качественное соединение стоит при сваривании использовать узкие валики. При этом должно выполняться охлаждение каждого наплавляемого слоя;
  • обязательно должны выполняться правила, которые относятся к соединениям из среднеуглеродистой основы.

Виды сварки

Процесс сварки высокоуглеродистых сталей может выполняться несколькими способами, которые могут отличаться некоторыми особенностями:

  • ручная дуговая сварка с использованием покрытых электродов. Рабочий процесс высокоуглеродистыми сталями имеет множество специфических характеристик. По этой причине сварка стали 40х, 30х, 45х и других марок должна проводиться с использованием специальных электродов, к примеру, НР-70. А сваривание швов производится током с обратной полярностью;
  • для соединения металла данного вида может применяться сварка под флюсом. В связи с тем, что в ручном режиме равномерно покрыть флюсом рабочую область очень тяжело, поэтому сварка проводится с использованием автоматической технологии. При расплавлении флюс переходит в состояние плотной оболочки, которая защищает сварочную ванну от воздействия вредных атмосферных факторов. Сварка стали 30хгса с использованием флюса производится при помощи трансформаторов.

Разновидности нержавеющей стали

Сварка разнородных сталей нержавеющей и обычной зависит не только от свойств материала, но и от его вида. По этой причине чтобы выбрать подходящий способ сваривания стоит сначала определить видовую принадлежность стали.


По главным свойствам нержавеющая сталь классифицируется на следующие виды:

  • аустенитная;
  • мартенситная;
  • ферритная.

В составе аустенитных имеется высокое содержание никеля и хрома. Применяются нержавеющие стали для изготовления сварных конструкций, для производства посуды, архитектурных компонентов, дымоходов, столовых принадлежностей. Сталь этого вида обладает высокой пластичностью, химической стойкостью и устойчивостью к механическим повреждениям.

В мартенситные стали входит низкий уровень углерода и хрома до 12 %. Металлы данной разновидности обладают высокой хрупкостью, но очень твердые. Из них производят режущие приспособления, бытовые изделия, турбины, крепежные элементы, которые используются в среде со слабым уровнем агрессивности.

В состав ферритных сталей входит средний уровень хрома. Они не закаляются и имеют повышенную устойчивость к агрессивным средам. Их в основном используют в машиностроительной сфере для производства втулок, валов, штуцеров.

Виды сварки нержавеющей стали

Сварка мартенситно, ферритных и аустенитных сталей выполняется практически всеми известными и распространенными способами сваривания. К наиболее популярным методам относят:

  • ручная дуговая MMA;
  • вольфрамовым электродом в атмосфере аргона TIG;
  • при помощи полуавтоматических технологий сваривания в инертной атмосфере - MIG/MAG, лазером.

Сварка аустенитных сталей и других разновидностей нержавеющего металла обычно выполняется осторожно, во время нее следует учитывать сложный химический состав и физические свойства металла. К главным качествам, которые затрудняют процесс сварки, относятся:

  • при сваривании нержавеющих сталей температура должна быть ниже, в отличие от сварки углеродистых металлов;
  • сварка разнородных сталей сопровождается высоким тепловым расширением;
  • низкий уровень теплопроводности.

Сварка жаропрочных сталей

Сварка жаропрочных сталей обычно выполняется при помощи дугового сваривания с использованием вольфрамового электрода. Весь процесс обычно проходит в среде защитных газов - аргона или гелия.


Сварка стали 15х5м и больших размеров может протекать при помощи аргонодугового сваривания с применением неплавящихся или плавящихся электродов или при помощи автоматической сварки под флюсом.

Аргоновая сварка стали 20х, 30х, 40х по сравнению со свариванием в гелиевой защитной среде сопровождается меньшим расходом газа, небольшим напряжением дуги и высоким сварочным током. По этой причине она является наиболее востребованной.

Сварка жаропрочной стали 40х, 20х, 30х, технология которой требует соединение металла в состоянии после закаливания, имеет несколько особенностей. Во время процесса сваривания металл прогревается до 1050-1100 градусов и после этого резко охлаждается.

Сварка стальных трубопроводов из любого вида металла (низкоуглеродистого, среднеуглеродистого, нержавеющего, жаропрочного) может выполняться разными способами. Самыми популярными являются ручное дуговое, автоматическое, газовое сваривание. Но в любом случае, прежде чем будет проведена сварка стали 30хгса и других марок, технология должна быть полностью изучена.


Краткие сведения о составе и свойствах среднеуглеродистых конструкционных сталей.
К среднеуглеродистым конструкционным сталям по классификации, принятой в сварочной технике, относятся стали, содержащие 0,26-0,45% С. Отличие составов среднеуглеродистых от низкоуглеродистых сталей в основном состоит в различном содержании углерода (табл. 7 и 8). К этой же группе относится сталь с повышенным содержанием марганца (марок ВСтЗГпс, 25Г, ЗОГ и 35Г).


Таб. 8

Для стали ВСт4сп ударная вязкость в зависимости от толщины листовой стали при расположении образца для испытания на ударный изгиб поперек направления проката следующая:

Толщина, мм ………………………… 5-9 10-25 26-40.
а н, кгс-м/см 2 ………………………… 7.........6...........4.
Для сортовой и фасонной стали ВСт4сп при расположении образца для испытания на ударный изгиб вдоль направления проката эта зависимость следующая: .
Толщина, мм …………………………. 5-9 10-25 26-40.
а н, кгс-м/см 2 …………………………. 10..........9.........7.

Очевидно, что различные плавки стали, содержащие углерод по нижнему или по верхнему пределу (например для стали Ст5 0,28 или 0,37% С), отличаются свойствами и имеют различную свари¬ваемость. Однако этого обычно не учитывают при выборе техно¬логии сварки, которую рассчитывают на наиболее высокое для данной марки стали содержание углерода. .
Среднеуглеродистые стали находят применение в судостроении, машиностроении и других отраслях промышленности. Для сварно-литых и сварнокованых конструкций находят применение преимущественно стали 35 и 40. .

Сварка среднеуглеродистых сталей.
Повышенное содержание углерода предопределяет значительные трудности сварки этих сталей. К ним относятся низкая стойкость металла шва против кристаллизационных трещин, возможность образования малопластичных закалочных структур и трещин в околошовной зоне и трудность обеспечения равнопрочности металла шва с основным металлом. .
Для преодоления этих трудностей и в первую очередь для повышения стойкости металла шва против кристаллизационных трещин при всех видах сварки плавлением стремятся снизить содержание углерода в металле шва. Это обычно достигается за счет применения электродных стержней и электродной проволоки с пониженным содержанием углерода и уменьшения доли основного металла в металле шва. Стремятся также обеспечить получение швов с большим значением коэффициента формы и применяют предварительный и сопутствующий подогрев, двухдуговую сварку в раздельные ванны и модифицирование металла шва.
Для сварки среднеуглеродистых сталей чаще всего применяют предварительный подогрев до температуры 250-300° С. За счет предварительного подогрева удается повысить на 0,01-0,02% допускаемое содержание углерода в металле шва, при котором еще не образуются трещины, и предупредить образование закалочных структур в околошовной зоне. Однако сварка с подогревом обладает серьезными эксплуатационными недостатками. Кроме того, чрезмерный подогрев может вызвать образование трещин вследствие увеличения провара основного металла и связанного с этим повышения содержания углерода в металле шва.
Для снижения доли основного металла в металле шва дуговую сварку среднеуглеродистых сталей, как правило, ведут с разделкой кромок на режимах, обеспечивающих минимальное проплавление основного металла и максимальное значение коэффициента формы шва. Для иллюстрации сказанного на рис. 4 показаны угловые швы, сваренные под флюсом на режимах, типичных для сварки низкоуглеродистой (а) и среднеуглеродистой (б) стали.


Рис. 4
а - низкоуглнродистая; б - среднеуглеродистая

Для повышения доли электродного металла в металле шва принимают также меры по увеличению коэффициента наплавки. .
При механизированных способах сварки это достигается применением сварочной проволоки малого диаметра (2-3 мм) и минимального сварочного тока. Лучшие результаты получаются при постоянном токе прямой полярности. Сварку под флюсом среднеуглеродистых сталей ведут на режимах, не характерных для этого высокопроизводительного способа, в связи с чем он не получил широкого применения при изготовлении конструкций из среднеуглеродистых сталей. .
Эффективным и надежным средством достижения равнопрочное tm металла шва при низком содержании в нем углерода служит дополнительное легирование элементами, упрочняющими феррит. При сварке среднеуглеродистых сталей для достижения равнопрочное достаточно дополнительно легировать шов марганцем и кремнием. Для сварки под флюсом применяют флюсы АН-348-А и ОСЦ-45 и сварочную проволоку Св-08А, Св-08ГА и Св-10Г2. При этом необходимое повышенное содержание в шве кремния и марганца достигается частично путем восстановления их из флюса. Этому способствует применение тонкой проволоки и малых токов, при которых восстановление кремния и марганца протекает более интенсивно. .
Для ручной сварки среднеуглеродистых сталей применяют электроды с фтористокальциевым покрытием УОНИ-13/55 и УОНИ-13/45, обеспечивающие достаточную прочность и высокую стойкость металла шва против образования кристаллизационных трещин. Чтобы избежать образования малопластичных и хрупких закалочных структур в околошовной зоне, при сварке среднеуглеродистых сталей следует замедлить остывание изделий путем снижения скорости сварки, предварительного подогрева металла, сварки двумя и более раздвинутыми дугами. Чем больше содержание углерода в стали, тем выше должна быть температура подогрева металла при сварке. Даже при использовании всех указанных приемов сварные соединения на среднеуглеродистой стали чаще всего получаются недостаточно пластичными, так как закалка основного металла в околошовной зоне полностью не предотвращается. Если к сварному соединению предъявляются требования высокой пластичности, то для выравнивания свойств приходится применять последующую термообработку, чаще всего закалку с отпуском.
Технология сварки среднеуглеродистых сталей в углекислом газе, как и сваока их покоытыми электоолами и под флюсом основана на снижении доли основного металла в металле шва и обеспечении благоприятной формы провара. В производстве сварка в углекислом газе для изготовления конструкций из среднеуглеродистых сталей применяется мало. Благодаря возможности в широких пределах изменять коэф¬фициент формы металлической ванны и медленному остыванию металла околошовной зоны при электрошлаковой сварке со¬здаются благоприятные условия для обеспечения высокого качества сварного соединения среднеуглеродистой стали. Однако при сварке металла, содержащего более 0,3% С, рекомендуется проводить предварительный и сопутствующий подогрев конструкции (особенно при кольцевых швах) до температуры 180-200° С. Высокая стойкость металла шва против образования кристаллизационных трещин обеспечивается при подаче электродной проволоки со скоростью, не превышающей критических значений.
При электрошлаковой сварке увеличение коэффициента формы металлической ванны, при прочих равных условиях, приводит к увеличению содержания в ней углерода. При этом, однако, стойкость металла шва против образования кристаллизационных трещин не снижается, так как одновременно с ростом коэффициента формы металлической ванны растет критическое содержание углерода. .
Серьезной задачей при электрошлаковой сварке сталей с содержанием более 0,33% С является обеспечение равнопрочности металла шва с основным металлом. Эта задача частично решается путем применения сварочных проволок Св-10Г2 или Св-12ГС и перехода углерода из основного металла. Содержание углерода в шве доходит до 0,22-0,24%. Однако даже при этом прочностные свойства металла шва находятся на нижнем уровне свойств основного металла. Для повышения прочности металла шва рекомендуется применять сварочную проволоку, обеспечивающую многокомпонентное легирование. Высокой ударной вязкости металла шва и участка крупного зерна околошовной зоны для сталей этой группы так же, как и для низкоуглеродистых сталей, можно достигнуть пока только нормализацией.
Режим электрошлаковой сварки среднеуглеродистых сталей, кроме скорости подачи проволоки, аналогичен приведенному выше. Скорость подачи сварочной проволоки выбирают исходя из данных. Например, если необходимо сварить металл толщиной 120 мм с 0,35% С, суммарная скорость подачи электродной проволоки составит 324 м/ч (2,7x120). При сварке двумя проволоками скорость подачи каждой из них будет вдвое меньше и составит 162 м/ч. В случае трех проволок скорость подачи каждой из них равна 108 м/ч. При этом достигается высокая стойкость металла шва против образования кристаллизационных трещин при сварке прямолинейных швов и погонной части кольцевых швов. Замыкание кольцевого шва желательно производить с еще несколько меньшей скоростью подачи проволоки и большей температурой сопутствующего подогрева. При сварке среднеуглеродистой стали плавящимся мундштуком и электродной пластиной режим выбирают в зависимости от состава основного металла. Для примера ниже приведен режим электрошлаковой сварки бандажей цементных печей, изготовляемых из стали 35Л толщиной 300 мм (по данным Г. 3. Волошкевича и др.): .

Марка флюса........ АН-8.
Зазор между свариваемыми кромками, мм..........26±2.
Марка проволоки. ......... Св-10Г2.
Диаметр проволоки, мм...........3.
Число проволок........... 4.
Толщина плавящегося мундштука, мм.......... 5.
Число пластин......... 3.
Скорость подачи проволоки, м/ч..........140.
Расстояние между проволоками, мм.......... 85.
Напряжение сварки, В.......... 40-45.
Сила тока, А......... 1800-2000.
Скорость сварки, м/ч........... 0,5.
Глубина шлаковой ванны, мм......... 40-45.

Режим электрошлаковой сварки станины прокатного стана из стали 25Л толщиной 450 и 750 мм электродной пластиной (по данным Ю. Н. Зайцева и Ю. А. Стеренбогена) приведен ниже: .

Марка флюса..........АН-8.
Зазор между свариваемыми кромками, мм: .
низ стыка.......... 29-31.
верх стыка..........33-34.
Марка электродной пластины.......10ХГСНД.
Число пластин....... 3.
Ширина пластины (мм) при толщине металла, мм:
450 ........... 140.
750............ 235.
Расстояние между пластинами, мм.......... 10-14.
Скорость подачи каждой пластины, м/ч............ 0,9.
Сила тока (А) при толщине металла, мм:
450.......... 700-900.
750.......... 1000-1300.
Напряжение сварки, В.......... 34-38.
Глубина шлаковой ванны, мм..........35-40.
Глубина шлаковой ванны, мм........ 35-40.

После сварки станину подвергают термообработке (нормализации и высокому отпуску). При этом обеспечивается равнопроч-ность сварного соединения с основным металлом. В состоянии после сварки сварное соединение также имеет вполне удовлетворительные механические свойства.

Сварка высокоуглеродистых сталей.
К высокоуглеродистым сталям по принятой в сварочной технике классификации относят стали с содержанием 0,46-0,75% С. Стали такого состава, как правило, не применяют для изготовления конструкций, но широко используют для изготовления деталей машин, подвергающихся наплавке.
Необходимость сварки подобных сталей возникает главным образом при ремонтных работах. Технология их сварки строится на той же основе, что и наплавка.
При сварке углеродистых сталей их технология схожа с технологией сварки чугуна, это главным образом подогрев до 300 С проковка и медленное охлаждение, а так же приминение электродного материала с малым содержанием углерода и серы.